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BOOK REVIEWS 

Eléments de géométrie algébrique. Par A. Grothendieck, rédigés avec 
la collaboration de J. Dieudonné. Publications de I'Institut des 
Hautes Etudes Scientifiques No. 4, Paris, 1960. 228 pp. 27 NF. 

The present work, of which Chapters 0 and I are now appearing 

together, is one of the major landmarks in the development of alge- 
braic geometry. It plans to cover eventually everything that is known 

in algebraic geometry over arbitrary ground rings, and of course a 
lot more besides. A tentative list of its chapters is as follows: 

Chapter I. Le langage des schémas. 
II. Etude globale élémentaire de quelques classes de 

morphismes. 
III. Cohomologie des faisceaux algébriques cohérents. 

Applications. 
IV. Etude locale des morphismes. 
V. Procédés élémentaires de construction de schémas. 

VI. Technique de descente. Méthode générale de con- 

struction de schémas. 
VII. Schémas de groupes, espaces fibrés principaux. 

VIII. Etude differentielle des espaces fibrés. 
IX. Le groupe fondamental. 
X. Résidus et dualité. 

XI. Théories d’intersection, classes de Chern, théor¢me 

de Riemann-Roch. 
XII. Schémas abeliens et schémas de Picard. 

XIII. Cohomologie de Weil. 

The list is subject to modifications, especially in so far as later 

chapters are concerned, partly because much of the research needed 
to complete these chapters remains to be done. 

To give the prospective reader some idea of the size of the work, 
suffice it to say that Chapter I is 134 pages long, that subsequent 

chapters are expected to be at least as long (probably around 150 
pages each), that all chapters are regarded as being open (i.e., sub- 
ject to additions such as are deemed necessary in the course of the 
writing), and that Chapters 0 and I together weigh 1 and 3/4 pounds 

in their present form. 
In order to get a more specific idea of what is to come, one should 

consult first Grothendieck’s address to the International Congress at 
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Edinburgh, 1958, and also the whole series of talks at Bourbaki semi- 

nars given in the past two years (available at the Institut Henri 
Poincaré, 11 Rue Pierre Curie, Paris) in which he has given a sketch 

of the proofs of important results to appear in later chapters. These 
talks will provide the necessary motivation to the whole work. They 
are written concisely, directly, and excitingly. Such motivation could 

not be given in the actual text, which is written very lucidly, is per- 

fectly organized, and very precise. Thanks are due here to Dieu- 
donné, without whose collaboration the labor involved in writing and 
publishing the work would have been insurmountable. 

Before we go into a closer description of the contents of Chapters 0 
and I, it is necessary to say a few words explaining why the present 
treatise differs radically in its point of view from previous ones. 

1. Most of algebraic geometry up to now has been concerned with 
varieties, say over arbitrary fields. It includes some results on alge- 
braic families of varieties, but such results are few in number, and it 

has become increasingly clear in recent years that one was facing 
serious difficulties in dealing with such algebraic systems. For exam- 
ple, the geometer is able to attach to a fixed variety other geometric 
objects, say a Picard variety. It is then a problem to show that if one 
has an algebraic system of varieties, the Picard varieties can be asso- 
ciated in such a way that they move along with the varieties, follow- 
ing the same parameter variety, even when special members of the 
family are degenerate. The tools available at present to deal with 
such a problem are recognized to be deficient (although of course in 
special cases, interesting results have been obtained, especially for 
non-degenerate fibers). 

2. In applications to number theory, it has been realized for some 
time that the reduction mod p of a variety defined over a number 

field was completely analogous to the situation of algebraic systems, 
a fiber being such a reduction. Although it was possible here again to 
give an ad hoc definition and results having useful applications to 
interesting special problems, the theory was technically disagreeable 
to apply, to say the least. 

In order to deal efficiently with the above two points, it was neces- 
sary to incorporate from the start into the foundations the notion of 
a variety defined over a ring, not necessarily Noetherian, and having 

nilpotent elements (say to reduce mod p", or to describe degenerate 

fibers in a system). This meant that a variety could not be regarded 
any more as a model of a “function field,” and thus that it should be 
defined starting with a local description supplemented by a method 
for gluing local pieces together (sheaves being the natural tool here). 



1961] BOOK REVIEWS 241 

3. The classical tools available were impotent to deal with the 
problem of defining the homology and homotopy functors to which 
one is accustomed in topology, and having similar properties. The 
necessity of having the homology functor, say, was made clear by 
Weil, who pointed out that if one has it, then the structure of the 
zeta function for non-singular projective varieties defined over finite 
fields follows immediately from the Lefschetz fixed point formula. In 
order to have this, a minimum requirement is that the homology 
groups H, associated with a variety V be modules, or vector spaces 
having characteristic 0 (no matter what the characteristic of the field 
of definition of V is!). 

4. The study and classification of non-abelian coverings of vari- 
eties, and in particular the determination of the fundamental group, 

was completely outside the range of available methods, except for 
varieties defined over the complex numbers where one could use 
transcendental methods. 

The above list could be expanded, but it gives a good idea why a 
new approach to algebraic geometry was needed. 

Let us now give a closer look at the contents of Chapters 0 and I. 
Chapter 0 is intended to include results of commutative algebra 

needed for the geometric applications. They are more or less well 
known, but it is difficult to give references for them. The reader 

should skip this chapter until he meets a place where he needs it. 
He should start reading Chapter I immediately. For this, he needs to 
know only what a ring is (commutativity and unit element are al- 
ways assumed), and the definition of a ring of fractions, which runs 

as follows. Let A be a ring, S a subset of A closed under multiplica- 

tion and containing 1. One considers equivalence classes of pairs (a, s) 
with a€A and sCS such that (a, s)~(a’, s’) if there exists .€S 

such that s;(s’a—sa’)=0. The equivalence class of (a, s) is denoted 
by a/s, and these form a ring in the obvious way. This ring is denoted 
by S-1A, and is 0 if S contains nilpotent elements. The most im- 
portant case is that where S is the complement of a prime ideal p, so 
that S-!A =A, is the local ring at p. 

We recall that a ringed space is a pair (X, Ox) consisting of a topo- 
logical space X and a sheaf of rings Ox. Ringed spaces form a cate- 
gory: A morphism (X, Ox)—>(Y, Oy) is a pair consisting of a continu- 
ous map ¢: and a contravariant map Oy—Ox compatible 
with f. If we denote by O, the fiber of Ox above a point xEX, then 
¥ induces a homomorphism y,: O4.2)—O.z. The ringed space (X, Ox) 
is called a local ringed space if all the rings O, are local rings. If 
(X, Ox) and (Y, Oy) are local ringed spaces, a morphism (¢, ¥) above 
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is called local if the inverse image of the maximal ideal of O, by ¥ is 
the maximal ideal of O,;2). The local ringed spaces and the local mor- 
phisms then form a category. It is a subcategory of this one which is 
of interest to the algebraic geometer. 

Namely, given a ring A, its spectrum X =spec(A) is the topological 

space (T>) but not 7;) whose points are the prime ideals of A with 
Zariski topology (the set of primes containing a given ideal is closed). 
One views X as a ringed space, the sheaf being that of the local rings 

Ay. It is thus a local ringed space, called an affine scheme. A pre- 
scheme is a local ringed space (X, Ox) such that every point admits 

an open neighborhood U such that (U, Ox| U) is isomorphic to an 

affine scheme. The preschemes form a category, the morphisms being 
the local morphisms. 

To simplify the notation, one sometimes omits the structure sheaf 

Ox and the map y, just writing for instance ¢: X—Y to indicate a 
morphism in the category of preschemes. 

Let I’ be the functor “section”. For each open subset U of X, TU 

is the ring of sections of Ox over U. Given a morphism @: X-—Y, we 

have a homomorphism I'(¢): Y—-IX. The converse is true for 
affine schemes, and in fact affine schemes Y are characterized among 

preschemes by the fact that for each prescheme X the map ¢—TI'(¢) 

of Mor(X, Y) into Hom(I'Y, ['X) is an isomorphism. (One could 
actually let X range over local ringed spaces.) Furthermore, if 
Y=spec(A), then IY is naturally isomorphic to A. 

The other main result of Chapter I is then given: It is the proof 

that products exist in the category of preschemes. Let us recall some 
terminology in abstract categories. Let C be a category, and S an 
object in C. We denote by Cs the category of objects over S, i.e. 
pairs (X, f) where X is in C and f is a morphism f: X—S in C, called 
the structural morphism. Given two objects f: XS and g: Y—S in 

Cs, a morphism ¢@ in Cs is a morphism ¢: X—Y in C which is such 

that the diagram 

xX 

is commutative. 
In the category of preschemes, the object S plays the role of a 

ground object (ground field, ground ring, ground anything you want 
vastly generalized, parameter object, etc.). 
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A product of two objects (X, f) and (Y, g) over S consists of an 
object (written X Xs Y) and two morphisms 

@:X 

Xs YY 

making the following diagram commutative and satisfying the obvi- 
ous universal mapping property for such pairs of maps: 

It is uniquely determined, up to a unique isomorphism. 
If A, B, R are three rings, and A, B are algebras over R, then the 

product of the two affine schemes spec(A) and spec(B) over spec(R) 
is spec(A ®B), the morphisms involved being the obvious ones. This 
is practically immediate from the definitions, and the existence proof 
in the general case is carried out by gluing local pieces together. 

One can consider the product non-symmetrically. Viewing S as 
ground object, let S’=Y be viewed as an extension of it. Then 
X XsS’ (sometimes written X*%’) may be viewed as an object over S’, 
called the pull back of X by the morphism g: S’—S. This pull back 
involves as a special case the extension of ground field or ring, and 
also reduction mod #, or the process of taking a fiber. For instance, if 
S=spec(Z) (Z the integers), then for each prime p, we have a mor- 
phism 

spec(Z/pZ) — spec(Z) 

and thus for each prescheme X over Z, we get its fiber over Z/pZ, 
namely X Xz spec(Z/pZ). 

Having constructed products, one gets a diagonal morphism 

XXX 

(the product without subscript being always over spec(Z)). One says 
that X is a scheme if this morphism is closed (obvious definition). 

Most of the rest of Chapter I is devoted to defining certain classes 
of morphisms in the category of preschemes (immersions, closed im- 
mersions, local immersions, morphisms of finite type, proper mor- 

phisms, separated morphisms, etc. and in subsequent chapters affine 
morphisms, projective morphisms, flat morphisms, unramified mor- 
phisms, simple morphisms, ad lib.) and of proving standard properties 

= 
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concerning the composition and products of such special classes of 
morphisms. Namely, given a category C, let us say that a subclass C’ 
of morphisms of C is distinguished if it has the following properties: 

(i) If f, g are in C’ and can be composed, so is fg. 
(ii) If f: XS is in C’ and g: Y—S is in C, then the pull back of 

f by gisin C’. 
(iii) If both f and g are in C’, so is fXsg. 
(iv) If f and g can be composed, g is in C’ and gf is in C’, then f is 

in C’. 
The general rule is that all particular types of morphisms defined 

in Chapter I (and subsequently) will form a distinguished subclass, 
except possibly under certain conditions of finiteness and separation. 
There is no point in going into the specific details here. We wish 

merely to indicate the way the system works. 
Chapter I concludes with an extended discussion of quasi-coherent 

sheaves, and formal schemes, those arising essentially from comple- 
tions of topological rings, and playing an important role in local 
analytic (algebraic) questions. They are not used until Chapter III, 
which will include Zariski’s theory of holomorphic functions and the 

connectedness theorem, and the reader may skip that part until he 
needs it. 

One more notion appears in Chapter I, worthy of notice for the 
implications it has concerning the point of view of the work. Again 

it is best to describe it in an abstract category C. Let A be a fixed 
object in C and let X vary in C. Then 

F4: X — Mor(X, A) 

is a (contravariant) functor from C into the category of sets, denoted 
Ens. We may also denote Mor(X, A) by A(X) and in our category 
of preschemes, we think of it as giving the set of points of A in X. 

(To justify this, think of A as an affine variety V over a field k, and 

let T be its finitely generated algebra of functions over k. Let K range 
over fields containing k. Then points of V in K are in bijective cor- 

respondence with homomorphism of IT into K, i.e. morphisms of 
spec(K) into spec(T). Here, spec(K) consists of one point, and the 

local ring above it is just K itself.) 

Given a functor F: C-Ens of C into the category of sets, Grothen- 
dieck calls F representable if it is isomorphic to a functor of type Fa. 

(The functors of one category into another form themselves a cate- 
gory, the morphisms being the obvious ones.) It is then immediate 

that the object A is uniquely determined, up to a unique isomor- 

phism. 
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Observe that the definition of products has been made in accord- 
ance with the representation functor, i.e. to satisfy the formula 

(X Xs ¥Y)(T) ~ X(T) ¥(T) 

for all objects T, the fiber product on the right being the usual one 
in the theory of sets (pairs of points projecting on the same point in 
S(T)). 

This notion of representable functor allows one to transport to 
any category standard notions like group, ring, etc. For instance, an 

object G is called a group object if one is given two morphisms 

GXG-—G (composition) and G->G (inverse) such that the representa- 
tion functor into the category of sets defines a group structure on the 
set G(X) for each X. (We have assumed finite products exist, but a 
rephrasing would do away with this.) 

It is one of the most basic ones of mathematics. To give an example 
from topology: On the category of CW complexes, the functor H? 
is representable by K(m, m). Or on the category of reasonable topo- 
logical spaces, the functor K (classes of vector bundles) is also repre- 
sentable by the classifying space. 

In algebraic geometry, Grothendieck reformulates certain classical 
problems in terms of the representation of functors, for instance the 
problem of constructing Picard schemes. Given X over S, the Picard 

functor consists in associating to each T over S the divisor classes of 
X which are rational over T. (This can of course be made precise.) 

The Picard scheme, if it exists, represents this functor. Grothendieck 

has recently obtained a fairly general condition on functors in the 
category of schemes under which he can prove that a functor is 
representable. This point of view marks a complete discontinuity 
with those preceding it and in a certain sense, is the first essentially 

new approach having entered algebraic geometry since the Italian 
school. 

A theorem is not true any more because one can draw a picture, 

it is true because it is functorial. 
To conclude this review, I must make a remark intended to empha- 

size a point which might otherwise lead to misunderstanding. Some 

may ask: If Algebraic Geometry really consists of (at least) 13 Chap- 

ters, 2,000 pages, all of commutative algebra, then why not just 
give up? 

The answer is obvious. On the one hand, to deal with special topics 
which may be of particular interest only portions of the whole work 

are necessary, and shortcuts can be taken to arrive faster to specific 

goals. Thus one may expect a period of coexistence between Weil's 
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Foundations and Elements. Only history will tell if one buries the 
other. Projective methods, which have for some geometers a particu- 

lar attraction of their own, and which are of primary importance in 

some aspects of geometry, for instance the theory of heights, are of 
necessity relegated to the background in the local viewpoint of Ele- 
ments, but again may be taken as starting point given a prejudicial 
approach to certain questions. 

But even more important, theorems and conjectures still get dis- 

covered and tested on special examples, for instance elliptic curves or 
cubic forms over the rational numbers. And to handle these, the 
mathematician needs no great machinery, just elbow grease and 
imagination to uncover their secrets. Thus as in the past, there is 
enough stuff lying around to fit everyone’s taste. Those whose taste 
allows them to swallow the Elements, however, will be richly re- 

warded. 
S. LANG 

Foundations of Modern Analysis. By J. Dieudonné. New York, Aca- 
demic Press, 1960. 14+361 pp. $8.50. 

The purpose of this book is to provide the necessary elementary 
background for all branches of modern mathematics involving Analy- 

sis, and to train the students in the use of the axiomatic method. It 

emphasizes conceptual rather than computational aspects. Besides 

pointing out the economy of thought and notation which results from 
a general treatment, the author expresses his opinion that the stu- 
dents of today must, as soon as possible, get a thorough training in 
this abstract and axiomatic way of thinking if they are ever to under- 

stand what is currently going on in mathematical research. The stu- 
dents should build up this “intuition of the abstract”, which is so 

essential in the mind of a modern mathematician. The angle from 
which the content of this volume is considered is different from the 
ones in traditional texts of the same level because the author does 
not just imitate the spirit of his predecessors but instead has a more 
independent pedagogical attitude. This book takes the students on a 
tour of some basic results, among them the Tietze-Urysohn extension 
theorem, the Stone-Weierstrass approximation theorem, the Ascoli 
compactness theorem, the Jordan curve theorem and the F. Riesz 
perturbation theory. These are some of the hills in the scenery which 

are surrounded by nice valleys connecting them. This course, to be 

taught during a single academic year, is elementary in the sense that 
it is intended for first year graduate students or exceptionally ad- 
vanced undergraduates. Naturally, students must have a good work- 
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ing knowledge of classical Calculus and of elementary Linear Algebra 
before reading this volume. The book includes a good list of problems, 
some of them particularly interesting and unusual for a textbook. 
Specific references to the books of Ahlfors, Bourbaki, Coddington- 
Levinson, Halmos, Jacobson, Kelley, Loomis and Taylor are included 
to assist the students in completing their knowledge. 

Chapter | (Elements of set theory) treats the indispensable mini- 
mum about sets, Boolean algebra, product sets, mappings and de- 
numerable sets. The author does not try to put set theory on an 

axiomatic basis. He remarks that one very seldom needs more than 
elementary properties in the applications of set theory to Analysis. 
The author states the axiom of choice neatly and makes no noise 
about it. He says that it can sometimes be shown that a theorem 

proved with the help of that axiom can actually be proved without it. 
However he never goes into such questions, which properly belong to 
Logic. 

Chapter I1 (Real numbers) derives the properties of real numbers 
from a certain number of statements taken as axioms. The real num- 
bers system is presented as an Archimedean ordered field satisfying 
the nested intervals condition. These axioms can, of course, be proved 

to be consequences of the axioms of the natural integers together with 
parts of set theory through the Dedekind or Cantor procedures. Al- 

though such proofs have great logical interest, they have no bearing 
whatsoever on Analysis and teachers should not burden students 
with them in trying to transmit the spirit of mathematical rigor. This 
is the right attitude shared by this text. 

Chapter III (Metric spaces) constitutes the core of the book, as 
there is developed in it the geometric language in which we now ex- 

press the results of Analysis and which has made it possible to reach 

full generality, besides occasionally supplying the simplest and most 
perspicuous proofs. As the author says, after some experience the 
student should be able to acquire the conviction that, with proper 

safeguards, his own geometric intuition is an extremely reliable guide 
and that it would be a real pity to limit it to ordinary three dimen- 

sional space. This chapter deals in a standard way with continuity, 
completeness, compactness and connectedness. The completion pro- 
cedure of metric spaces is not mentioned. 

Chapter 1V (Additional properties of the real line) includes some 

elementary properties of the real number system, plus the Tietze- 
Urysohn extension theorem, which is proved through a known explicit 
formula peculiar to the metric case. 

Chapter V (Normed spaces) and Chapter V1 (Hilbert spaces) pre- 
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sent the elementary geometrical aspects of Banach and Hilbert spaces 
and also discuss convergent series. Propositions on Banach spaces 
linked to the notion of Baire category and duality theory are not 
touched upon. Unwarned readers may find the author a little un- 
generous concerning the amount of material in Chapter VI, which 
looks surprisingly short as compared to what one would expect from 
the warm praise of Hilbert spaces in the text. 

Chapter VII (Spaces of continuous functions), after a few indis- 

pensable preliminary considerations, presents in a neat and direct 
form two of the basic tools of Analysis, namely the Stone-Weierstrass 
theorem and its application to polynomial and trigonometric approx- 

imation and the Ascoli compactness theorem in continuous functions 
spaces. This is a short and elegant chapter, which presents in a tidy 
form fundamental material not yet standard in elementary textbooks. 

Chapter VIII (Differential Calculus) is beautifully written. The 

subject matter of the chapter is nothing else but the elementary theo- 
rems of Calculus, presented in a manner and generality not yet the 
vogue in textbooks of comparable level. The author is a partisan of 
an intrinsic formulation and a geometric outlook on Analysis through 
use of Banach spaces. Aside from several applications of such a gen- 

eral Calculus, one of the sound motivations for this intrinsic view- 

point is the idea of calculus on a manifold which no young mathe- 
matician of nowadays can ignore any longer. The author advises the 
readers in a fatherly way to assume all vector spaces to be finite 
dimensional if that gives them an additional feeling of security, but 
he also stimulates the students to greater courage by adding that 

this assumption will not make the proofs shorter or simpler. By stick- 
ing to the fundamental idea of Calculus, namely the local approxima- 
tion of functions by linear functions, successive derivatives f?(xo) at 

a point x»€A of a mapping f of an open subset A of a Banach space 

E into a Banach space F, are defined to be in the Banach space 
£,(E; F) of all continuous p-linear mappings of E7=EX --- XE 
(p times) into F. The basic rules of Calculus are proved in this geo- 
metric setting and reproduce, of course, classical rules when E= R* 

and F=R* are the spaces of and m variables. The all-important 
mean value theorem is proved for vector valued functions in the weak 

form of an inequality, which corresponds to | f(b) —f(a)| <|b-a| 
*SUPasrsb | f’(x)| rather than to the more precise classical form ex- 
pressed as an equality. For most purposes, indeed, as the author 

points out, all one needs to know is the inequality formulation. The 

primitive and integral for functions of a real variable are not deduced 
from the general theory of Lebesgue integration, which has won a 
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definitive place in Mathematics, nor from Riemann integration, 
which seems to have already seen its golden period and may become 
an antiquary item, but only for vector valued functions of real vari- 
ables with discontinuities of first kind (in an awkward classical ter- 
minology), or regulated functions according to the author’s neologism, 
that is a function having a limit on the right and on the left at each 
point. The plausibility of this choice is that integration is easily and 
intuitively defined for step functions and that a mapping f of a com- 
pact interval of the real line into a Banach space is regulated if and 
only if f is the limit of a uniformly convergent sequence of step func- 
tions, which allows one to extend integration by uniform continuity. 
Since the powerful tools of Lebesgue integration are not needed in a 
number of important questions, it is perfectly feasible to limit the 
integration process to a category of functions containing the continu- 
ous ones and large enough for elementary purposes. This is what the 
author does by stopping at regulated functions and so going only 
halfway to Riemann integration. 

Chapter 1X (Analytic functions) emphasizes only the general facts 
for analytic functions of a finite number of variables with values in 
Banach spaces. The cases of real and complex variables are discussed 
simultaneously, as far as this can be done. The presentation goes up 
to the Cauchy integral theorem in its usual form. Results based on the 
Weierstrass preparation theorem are not discussed, so that we have 
here the theory of analytic functions of several variables only in the 
elementary sense. An A ppendix to Chapter 1X (Application of analytic 
functions to plane Topology by Eilenberg’s method) is one of the 
pearls in this text. An irreducible minimum concerning indexes, 

homotopies and essential mappings leads to elegant proofs of Jan- 
iszewski’s separation theorem and the Jordan curve theorem. Some 
students and even mature mathematicians know the statement of the 
Jordan theorem but have never seen its proof. They even understand 
that false proofs were given by distinguished mathematicians, includ- 
ing Jordan himself. It is therefore welcome to have the accessible and 
neat proof in this elementary text, besides those already available. 

Chapter X (Existence theorems) deals with procedures linked to 
the notion of completeness and the method of successive approxima- 
tions in establishing stability theorems for local homeomorphisms 
under “slight” perturbations and fixed point theorems. Only the 
most elementary results of this type are exposed. The subject matter 
of this chapter has become a classical and fashionable way of intro- 
ducing students to Functional Analysis, as it requires only a few ab- 
stract notions in establishing tangible classical results in a unified 
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way. This chapter deals with the implicit function theorem for func- 
tions between Banach spaces, the Cauchy existence theorem for 
ordinary differential equations in vector valued functions and the 
Frobenius theorem on the complete integrability of total differential 
equations between Banach spaces. 

Chapter XI (Elementary spectral theory) is the gist of the course, 
not only because it provides an easy approach to a powerful method 
of Analysis, namely Spectral Theory, but also because it draws 

practically on every preceding chapter, showing the students that 
those abstract techniques were not purposeless generalizations. The 

flavor of this chapter is that, following Fredholm, compact operators 
can be viewed as “slight” perturbations of general continuous oper- 
ators, provided one considers as “negligible” what happens in finite 
dimensional spaces. After a few elementary properties of spectra of 
continuous operators, the theory of F. Riesz concerning compact 

perturbations of an identity operator is developed. Since this theory, 
for topological vector spaces, has found new geometrical applications 
other than those devised initially, it is nice to have it presented almost 

at the start of this chapter with few prerequisites. Compact operators 
in Hilbert spaces, the Fredholm integral equation and the Sturm- 

Liouville problem are the next goals of this pretty chapter. 
The book is very up to date in terminology, taste and fashion. If 

a general program of graduate study for mathematicians is to be con- 
sidered, it should be such that students are expected to get familiar 

with the content of this volume, whatever their future field of special- 

ization may be. Many opinions it contains are stated in an incisive 
way, well-known to people personally acquainted with the author, in 
an attempt to eliminate some vicious attitudes repeated over and over 
again in traditional texts. This is a most valuable elementary book 
written by a distinguished mathematician which undoubtedly will 
help to attract fresh talent into Mathematics. In west Europe, in 

Japan and in the United States, it is not yet as common to have 
genuinely good elementary texts written by outstanding mathe- 
maticians as it is nowadays in Russia, where, in spite of printing costs, 

inexpensive editions make such books accessible to the pocket of 
almost every student. 

LEOPOLDO NACHBIN 



THE ANNUAL MEETING IN WASHINGTON 

The sixty-seventh annual meeting of the American Mathematical 
Society was held at the Hotel Willard in Washington, D. C., on Janu- 

ary 23-26, 1961. During the same week, with headquarters at the 
same hotel, there were meetings of the Association for Symbolic 

Logic, the Mathematical Association of America, and the Society for 
Industrial and Applied Mathematics. The attendance of 1,527, in- 

cluding 1,203 members of the Society is the largest in the records of 

this Society. 

The thirty-fourth Josiah Willard Gibbs Lecture was presented by 
Professor J. J. Stoker of New York University. The high quality of 
the series was beautifully upheld. The title of the lecture was Prob- 
lems in nonlinear elasticity. President Montgomery presided at the 

session, which took place at 8:00 P.M. on Tuesday, January 24, in the 
Grand Ballroom. 

By invitation of the Committee to Select Hour Speakers for An- 
nual and Summer Meetings, Professor Lars Hérmander of the Uni- 
versity of Stockholm and the Institute for Advanced Study addressed 
the Society in the Grand Ballroom at 2:00 p.m. on Monday, January 
23. The title of his address was On the range of differential operators. 
Dr. Vlastamil Pt4k introduced the speaker. 

By invitation of the same committee, Professor Helmut Wielandt 
of the University of Tiibingen and the California Institute of Tech- 
nology gave an address in the Grand Ballroom at 2:00 P.M. on 

Wednesday, January 25. His subject was On the structure of finite 
groups. The speaker was introduced by Professor Marshall Hall, Jr. 

There were thirty-two sessions for contributed papers, at which a 

total of two hundred thirty-four papers were presented to the Soci- 
ety. The number of papers was somewhat larger than the number pre- 
sented at the previous annual meeting and established a new record 
for the number of papers presented. The Society acknowledges with 

thanks the service of the following people in presiding over the ses- 
sions for contributed papers: Dr. Norman Bazley, Professors R. H. 

Bing, R. H. Cameron, V. F. Cowling, J. H. Curtiss, J. B. Diaz, 

Dr. R. D. Driver, Professors Carl Faith, D. J. Foulis, Murray Ger- 
stenhaber, O. G. Harrold, Jr., Mr. Michael Goldberg, Professors Emil 

Grosswald, Erik Hemmingsen, J. E. Houle, Jr., S. B. Jackson, V. L. 

Klee, Jr., Jean E. LeBel, Dr. Benjamin Lepson, Professors L. F. 
McAuley, Josephine Mitchell, David Nelson, B. E. Rhoades, Walter 
Rudin, Anne E. Scheerer, Dr. Daniel Shanks, Dr. Oved Shisha, Pro- 
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fessors M. F. Smiley, Andrew Sobczyk, Domina E. Spencer, Choy- 
Tak Taam, and A. C. Zaanen. 

As the meetings of this Society grow, it becomes increasingly neces- 
sary to use mechanical aids to the ear and eye in order that a large 
audience may follow all the details of a lecture. Of special note at this 
meeting was the fact that, with the cooperation of the manufacturer, 
the projection machine called the Vu-Graph was available at every 

session. In addition, instruction was available about the use of the 

machine and materials could be procured for advance preparation of 
transparencies for projection during lectures. In the hands of a 

speaker who takes the pains to make careful preparation, the Vu- 
Graph appears to be quite successful as an aid to the eye of the mem- 
bers of the audience. 

Abstracts of the papers presented at the meeting appear in the 
Notices of the American Mathematical Society for December (issue 
no. 50) and succeeding issues. There were no papers presented by 
title except for the isolated instances of contributors who were un- 
avoidably prevented from presenting in person a paper which had 
already been scheduled. This was the first meeting affected by the 
recently instituted plan of handling contributed papers for presenta- 

tion by title through supplementary programs which are detached 
from any meeting of the Society. 

The Annual Business Meeting of the Society was held in the Grand 

Ballroom at 2:00 p.m. on Thursday, January 26, 1961. Vice President 
Bohnenblust presided. 

Appreciation was expressed to Professors John W. Brace and 
M. W. Oliphant for their contributions to the arrangements for the 
meetings. 

Dr. W. Homer Turner, Executive Director of the United States 
Steel Foundation, made a short address to the business meeting and 

presented the Society with a check for five thousand dollars to assist 
in studying modes of communication between modern developments 
in mathematics and graduate students, and between the industrial 

mathematician and the academic mathematician. 
The Secretary reported briefly on the affairs of the Society. 
The Trustees of the Society met on the morning of Tuesday, 

January 26. 
The Council of the Society met on the afternoon of Wednesday, 

January 25. After an intermission for dinner the meeting continued 
through the evening. 

At the Council meeting, the Secretary announced the election of 
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the following one hundred twenty-two persons to ordinary member- 

ship in the Society: 

Mr. Oliver G. Aberth, Swarthmore College; 

Mr. Achdat, Bandung Institute of Technology, Bandung, Java, Indonesia; 

Mr. David J. Allen, Donell Farm, Bennington, Vermont; 

Dr. Donald E. Amos, Sandia Corporation, Albuquerque, New Mexico; 

Miss Kay A. Anderson, Analyst, Computer Sciences Corp., Inglewood, California; 
Professor Kiyoshi Aoki, Niigata University, Niigata, Japan; 

Mr. Lucio Artiaga, University of Saskatchewan; 

Mr. George W. Batten, Jr., William Marsh Rice University; 

Mr. Joseph Battle, University of Michigan; 
Mr. James E. Benson, Fairleigh Dickinson University; 

Mr. Richard W. Benson, Research Math., Pikewood Corp., Albuquerque, New 

Mexico; 

Mr. Triloki N. Bhargava, Michigan State University; 

Mr. Daniel G. Bobrow, Massachusetts Institute of Technology; 

Mr. James R. Bower, University of Michigan; 

Mr. Edwin H. Brackett, International Business Machines Corporation, Bethesda, 

Maryland; 

Mrs. Olive S. Bowman, Bridgewater College; 

Professor James R. Brown, University of Massachusetts; 

Mr. Hernan R. Bravo Fiores, Institute de Fisica y Mathmaticas, Chile; 
Mr. Edward S. Brown, Jr., Defense Atomic Support Agency, Albuquerque, New 

Mexico; 

Mr. Richard A. Byerly, The Association for Bank Audit Control and Operation, 

Clarendon Hills, Illinois; 

Mr. Gaylord A. Capes, Westinghouse Electric Corp., Baltimore, Maryland; 

Dr. Roderick G. Chisholm, St. Mary’s College; 

Mr. Donald H. Clanton, Oak Ridge National Laboratory, Oak Ridge, Tennessee; 

Mr. William E. Christilles, St. Mary’s College; 

Mr. Richard L. Cline, International Business Machines Corp., New York, New York; 

Mr. David B. Coghlan, Foote Mineral Company, Berwyn, Pennsylvania; 

Sister Conrad, Central Catholic High School, Ft. Wayne, Indiana; 

Mr. George T. Crocker, Auburn University; 

Professor Ubiratan D'Ambrosio, University of Sao Paulo; 

Professor Ludwig W. Danzer, University of Washington; 

Mr. Gary A. Davis, Mt. Carmel College, Niagara Falls, Ontario, Canada; 

Mr. James R. Dean, Technical Operations, Inc., Fort Monroe, Virginia; 

Mr. Donald F. Dempsey, International Business Machines Corp., Dearborn, Michi- 

gan; 
Mr. Louis E. De Noya, Oklahoma State University; 

Professor Nicolae Dinculeanu, University of Bucarest, Bucarest, Roumania; 

Dr. Andrew G. F. Dingwall, Radio Corporation of America, Harrison, New Jersey; 

Miss Diane K. Downie, University of Idaho; 

Mr. John R. Durbin, University of Kansas; 

Dr. David B. A. Epstein, Princeton University; 

Dr. Manus R. Foster, Socony Mobil Oil Co., Dallas, Texas; 

Mr. Bernard L. Freese, Royal McBee Corp., Chicago, Illinois; 

Mr. Robert B. Gardner, University of California; 
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Mr. Francis J. Garvis, System Development Corp., Santa Monica, California; 

Mr. Thomas M. Gill, Bethel College; 

Mr. Samuel Gorenstein, System Development Corp., Paramus, New Jersey; 

Professor Svend T. Gormsen, Virginia Polytechnic Institute; 

Mr. George C. Graff, University of Illinois; 

Mr. Frederick P. Greenleaf, Yale University; 

Dr. George J. Habetler, General Electric Co., Schenectady, New York; 

Dr. Asghar Hameed, Government College of Engineering and Technology, Pakistan; 

Dr. Eldon R. Hansen, Lockheed Aircraft, Palo Alto, California; 

Mr. Warren F. Haverkamp, Columbia Wax Co., Glendale, California; 

Mr. Earl W. Hessee, Lockheed Aircraft Corp., Dawsonville, Georgia; 

Mr. Kenneth L. Hillam, University of Colorado; 

Mr. William W. Hokman, Virginia Polytechnic Institute; 

Professor Kinya Honda, St. Paul’s University, Tokyo, Japan; 

Mr. Donald G. Hook, University of California; 

Professor Paul H. Hutcheson, Middle Tennessee State College; 

Mr. Douglas H. Hutchinson, Union Carbide Consumer Products Co., Cleveland, 

Ohio; 

Professor John M. Irwin, New Mexico State University; 

Mr. Robert C. Irwin, MITRE Corp., Bedford, Massachusetts; 

Miss Joanne M. Jasper, Anna Maria College; 

Mr. Robert E. D. Jones, Iowa State University; 

Mr. William B. Jones, National Bureau of Standards, Boulder, Colorado; 

Dr. Frank C. Karal, Jr., New York University; 

Mr. Seymour Kass, University of Chicago; 

Lt. Jerald C. Kindred, Air Force Department, Ft. Lawton, Washington; 

Mr. Jerry P. King, University of Kentucky; 

Mr. Kenneth R. Klopf, Shell Oil Co., Midland, Texas; 

Mr. Bengt J. Kredell, ASEA, Vasteras, Sweden; 

Mr. Isaac C. Lail, Army Department, Washington, D. C.; 

Professor Lawrence H. N. Lee, University of Notre Dame; 

Mr. Kenneth D. Lerche, Lehigh University; 

Mr. Stanley M. Lukawecki, Auburn University; 

Professor Gustave H. Lundberg, Vanderbilt University; 

Reverend John J. MacDonnell, College of the Holy Cross; 

Mr. Walter T. Mara, Monterey Peninsula College; 

Dr. Eugene H. Nicholson, St. Louis, Missouri; 

Mr. Torsten Norvig, University of Massachusetts; 

Dr. Ernest L. Osborne, Washington, D. C.; 

Mr. Jack L. Owens, Mene Grande Oil Co., Apartado 45, Barcelona, Venezuela; 

Mrs. Frankie B. Patterson, Southern University; 

Mr. Donald M. Peterson, Sr., Convair Corp., Ft. Worth, Texas; 

Mr. Michael R. Pew, Electra Mfg., Independence, Kansas; 

Mr. John A. Pfaltzgraff, University of Kentucky; 
Mr. John T. Porter, Jr., Canateson Salvage, Moody, Texas; 

Mf. Alfred G. Quade, Pure Oil Co., Chicago, Illinois; 

Mr. Louis V. Quintas, City College, New York, New York; 

Mr. Marlon C. Rayburn, Jr., Earlham College; 

Mr. Clyde D. Rinker, Bendix Corp., Kansas City, Missouri; 

Mr. Edwin H. Rogers, Carnegie Institute of Technology; 

Dr. Bernard W. Roos, General Dynamics Corp., San Diego 12, California; 
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Professor Paul T. Rygg, Montana State University; 

Mr. William L. Salvatore, Classical High School, Providence, Rhode Island; 

Miss Mary F. Saunders, Sanders Association, Inc., Nashua, New Hampshire; 

Mr. Richard L. Schauer, University of Wisconsin; 

Mr. Alvin L. Schreiber, Human Sciences Research, Inc., Arlington, Virginia; 

Dr. Lorraine Schwartz, University of British Columbia, Vancouver; 

Professor Robert E. Seal, Illinois Institute of Technology; 

Mr. Freeman S. Sharp, Hyattsville, Maryland; 

Dr. Isadore Silberman, Raytheon Corporation, Bedford, Massachusetts; 

Mr. Michael S. Skaff, University of Illinois; 

Mr. William T. Sledd, University of Kentucky; 

Dr. Alan R. Smith, International Nickel Co. of Canada, Thompson, Manitoba; 

Mrs. Dorothy P. Smith, New Mexico Highland University; 

Mr. Robert P. Smith, Navy Department, Washington, D. C.; 

Mr. Robert E. Spivack, University of South Carolina; 

Brother Joseph W. Stander, University of Dayton: 
Mr. Jeremy J. Stone, Stanford Research Institute; 
Professor Charles F. Taylor, Maryville College; 
Dr. Sean J. Tobin, University College, Galway, Ireland; 

Professor Terry Triffet, Michigan State University; 

Mr. Verlyn R. Unruh, System Development Corp., Santa Monica, California; 

Professor Gerard J. Van Der Maas, University of Ottawa, Ottawa, Ontario; 

Mr. John S. Warren, Boston Edison Co., Boston, Massachusetts; 

Miss Martha F. Watson, University of Kentucky; 

Professor James R. Webb, Louisiana State University; 
Professor Arthur D. Wirshup, California State Polytechnic College; 

Dr. N. Donald Ylvisaker, Columbia University; 

Mr. Raymond A. Zachary, Jr., Texas Instruments Inc., Dallas, Texas; 

Dr. James P. Zietlow, New Mexico Highland College. 

It was reported that two hundred and ninety-six persons were 
elected to membership on nomination of institutional members as 

indicated : 

University of Alberta:John W. Moon. 

Andrews University: Mr. Theodore R. Hatcher. 

Arizona State University: Professor Robert W. Sanders. 

Auburn University: Mr. Porter G. Webster. 

University of British Columbia: Miss Marguerite E. Barrett, Mr. Jay L. Delkin, Mr. 
Alan R. Dobell, Mr. Gene B. Gale, Mr. William T. Iwata, Mr. Robert L. Johns- 

ton, Mr. Richard Lee, Mr. Donald J. Mallory, Mr. Frank C. May, Mr. Richard 

C. Willmott. 
Brown University: Mr. Frederick J. Almgren, Jr., Mr. Paul Dormont, Mr. Joseph B. 

Geiser, Mr. Morton E. Gurtin, Dr. Robin J. Knops, Professor Allen C. Pipkin, 

Dr. Tryfan G. Rogers, Mr. Gordon B. Small, Jr., Mr. William F. Tyndall, Mr. 

Eric Varley, Mr. Michael Voichick. 

California Institute of Technology: Mr. Stephen A. Andrea, Mr. Richard E. Balsam, 

Mr. Fletcher I. Gross, Mr. Alfred W. Hales, Mr. Donald E. Knuth, Mr. Louis A. 

Lopes, Jr., Mr. Jack W. Macki, Mr. Stanley A. Sawyer. 

University of California, Berkeley: Mr. Bruce A. Bloomfield, Mr. Fraser A. Bonnell, 

Mr. Benson S. Brown, Miss Carole J. Colebob, Mr. Ernest T. Fickas, Mr. Haim 
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Gaifman, Mr. Ronald L. Graham, Mr. Michel Jean, Mr. William L. Kent, Mr. 

Charles P. Luehr, Mr. George H. Orland, Mr. George S. Rinehart, Mr. 

Galen L. Seever, Mr. William H. Sills, Mr. Eleftherios C. Zachmanoglou. 

University of California, Los Angeles: Mr. Lawrence P. Belluce, Mr. Stuart E. Black, 

Mr. Stanley P. Franklin, Mr. William M. Lambert, Jr., Mr. Ralph H. Wessner. 

Case Institute of Technology: Mr. Charles G. Cullen. 
Catholic University of America: Mr. Gerald R. Andersen, Rev. John C. Friedell. 

University of Chicago: Mr. Robert B. Brown, Mr. Leif Kristensen, Mr. Tzee C. Kuo, 
Mr. Yung-Yung Lu, Miss Therese E. Raczynski, Mr. Mitchell H. Taibleson. 

University of Colorado: Mr. John D. De Pree, Mr. David A. Shotwell. 

Cornell University: Dr. Zbigniew Ciesielski, Dr. Caspar R. Curjel, Mr. Harold G. 
Diamond, Mr. Paul S. Green, Mr. Clifford T. Ireland, Mr. Alan McConnell, Mr. 

Stanley E. Mamangakis, Mr. Alfred B. Manaster, Mr. Irwin S. Pressman, Mr. 

John S. Rose, Mr. Chia-Hui Shih, Mr. Benjamin T. Smith, Dr. Samuel J. Taylor. 

Duke University: Mr. David R. Anderson, Mr. Warren S. Edelstein, Mr. Dick L. 

George, Mr. David R. Hayes, Mr. Robert M. McConnel. 

University of Florida: Mr. Billy R. Hare. 
University of Georgia: Mr. Julio R. Bastida, Mr. Curtis P. Bell, Mr. Brittian J. Wil- 

liams. 

Harvard University: Mr. Edward B. Curtis, Mr. Jerry L. Fields, Mr. Bernard R. 

Kripke, Mr. Satish D. Shirali. 

Illinois Institute of Technology: Mr. Eugene L. Allgower. 

University of Illinois: Mr. Steven F. Bauman, Mr. Clinton R. Foulk, Mr. James J.. 

Gillian, Mr. Charles F. Koch, Mr. Charles G. Krueger, Mr. Gary K. Leaf, Mr. 

Eizo Nishiura, Mr. Surendra N. Patnaik, Dr. Chivukula R. Rao, Mr. Keith A. 

Rowe. 

Institute for Advanced Study: Dr. James A. Green, Professor Tatsuo Homma, Profes- 

sor Heinz Huber, Professor Jan W. Jaworowski, Dr. Mieo Nishi, Mr. Mikio Sato, 

Dr. Charles T. C. Wall. 

Institute for Defense Analyses: Mr. Gerald J. Mitchell. 

State University of Iowa: Mr. Orabi H. Alzoobaee, Mr. Norman Y. Luther, Mr. 

Joseph M. Martin, Mr. Donald V. Meyer. 

Johns Hopkins University: Mr. George E. Lindamood, Mr. Peter H. Lord, Mr. Charles 

C. Pugh, Mr. Allan J. Silberger, Mr. Morris L. Thrower, Mr. J. Thomas War- 

field, Miss Bernice Weinstein. 

University of Kansas: Mr. Terrence J. Brown, Mr. William T. Covert, Mr. Eberhard 

G. P. Gerlach, Mr. J. Peter Johnson, Mr. Martin T. Lang, Mr. Paul W. Liebnitz, 

Mr. William D. McIntosh, Dr. Andrew Page, Mr. Raymond E. Pippert. 

Lehigh University: Mr. Gerard E. Cozzolino, Mr. David K-s Hsieh. 

McMaster University: Mr. Howard L. Jackson, Professor Derek J. Kenworthy. 

University of Maryland: Mr. George R. Desi, Mr. Donald H. Flanders, Mr. Robert J. 

Gauntt, Mr. Svetozar Kurepa, Mr. Richard J. Weinacht, Professor Marvin Zelen. 

Massachusetts Institute of Technology: Mr. Paul W. Abrahams, Mr. Howard E. Con- 

ner, Mr. Ramesh A. Gangolli, Mr. Joseph Hershenov, Mr. Louis Hodes, Mr. 

Gerald M. Leibowitz, Mr. David C. Luckham, Mr. Richard M. Moroney, Jr., 
Mr. William E. Ritter, Mr. Gabriel Stolzenberg, Mr. Norman R. Wagner, Mr. 

Israel J. Weinberg. 

University of Miami: Mr. Charles R. Fitzpatrick, Mr. Jules B. Kaplan. 

Michigan State University: Mr. John W. Baker, Mr. Mickey W. Dargitz, Mr. Donald 

L. Fisk, Mr. Jerome X. Goldschmidt, Mr. Robert L. Hemminger, Mr. 

David C. Kay. 
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University of Michigan: Mr. George H. Andrews, Professor Robert J. Bridgman, Mr. 
John A. A. Kelingos, Mr. Patrick J. Ledden, Mr. Gerald E. Meike, Mr. Donald 
E. Sarason, Mr. George R. Sell, Professor Khyson Swong, Mr. Charles A. Trauth, 

Jr., Mr. Bertram J. Walsh. 
University of Minnesota: Mr. Patrick R. Ahern, Mr. Jay P. Fillmore, Mr. C. J. Nor- 

man Fritz, Mr. Wayne W. Schmaedeke, Mr. James W. Yackel. 
University of Missouri: Mr. William A. Kirk, Mr. Eugene F. Steiner, Mr. Paul E. 

Waltman. 
University of Nebraska: Mr. Jerrold W. Bebernes. 

University of New Hampshire: Mr. Robert E. O'Malley, Jr. 
New Mexico State University: Mr. William E. Walden. 

New York University: Mr. Yung M. Chen, Mr. Djairo G. De Figueiredo, Mr. 

George W. Logemann, Professor Sigeru Mizohata, Mr. Kennard W. Reed, Jr., 

Mr. Alan D. Solomon, Mr. George R. Stell, Mr. Robert E. L. Turner. 

State University of New York: Miss Patricia L. Bihr. 

University of North Carolina: Mr. Anil K. Bose, Mrs. Rebecca S. Cox, Mr. John R. 

Dowdle, Mr. Paul M. LeVasseur, Mr. Robert E. Spencer, Mr. Clifton T. 

Whyburn. 

Ohio State University: Mr. Robin W. Chaney, Mr. Robert L. McFarland, Miss Joan E. 

Smith. 
University of Oklahoma: Mr. Forrest R. Miller, Jr., Mr. David R. Proctor, Mr. 

Eugene E. Slaughter, Jr. 

Oklahoma State University: Mr. David R. Cecil, Professor Glen A. Haddock. 

University of Oregon: Mr. Robert M. Fesq, Mr. Lowell A. Hinrichs, Mr. Raymond E. 
Smithson, Mr. Charles L. Vanden Eynden. 

Pennsylvania State University: Mr. Joseph A. Cima, Mr. Alan S. Cover, Mr. Barry F. 
Kramer. 

Princeton University: Mr. Christopher Anagnostakis, Mr. R. Gordon Barker, Mr. 

Lutz Bungart, Mr. William G. Faris, Mr. John A. Hartigan, Mr. Robert C. 

Hartshorne, Mr. Peter J. Kahn, Mr. J. Peter May, Mr. Stephen Scheinberg, Mr. 

John J. Simon, Mr. Michael D. Spivak, Mr. William A. Veech, Mr. Robert Wells, 

Mr. Seth I. Zimmerman. 

Purdue University: Mr. John R. Alexander, Jr., Mr. Robert D. Bechtel, Mr. Richard 

E. Hughes, Mr. Kenneth R. King, Mr. Frank A. Smith, Mr. Joel A. Smoller, 

Mr. John R. Sorenson, Mr. Jack R. Stodghill. 

Rice University: Mr. Norman A. Shenk, II. 

Rutgers, The State University: Mr. Michael W. Lodato, Mr. Chung L. Wang, Mr. 

Israel Zuckerman, 
University of Southern California: Professor Gunter Ewald, Mr. Arthur S. Leslie, Miss 

Emily B. A. McCormick, Mr. Guillermo Restrepo, Professor Koichi Yamamoto. 

South Dakota School of Mines and Technology: Mr. Martin J. Marsden. 
Stanford University: Mrs. Patricia W. Beckman, Mr. William H. Berry, Mr. Bradley 

Efron, Mr. Martin Engert, Mr. Henry E. Pettis, Mr. Louis A. Fine, Mr. Jon D. 

Hopper, Mr. Leroy V. Junker, Mr. Franklin Lowenthal, Mr. Joseph Novello, 

Mr. James M. Ortega, Mr. Lawrence M. Perko, Mr. Jon E. Petersen, Mr. 

William H. Row, Jr., Miss Margaret E. Salmon, Mr. Dale W. Thoe, Mr. 

Arthur W. J. Ullman, Mr. Robert E. Wellck. 

Stephen F. Austin State College: Mr. R. G. Dean. 

Syracuse University: Mr. Stanley I. Mack. 

University of Texas: Mr. William C. Bean, Mr. Saul I. Drobnies, Mr. Donald J. 

Hansen, Miss Blanche J. Monger, Mr. Douglas R. Stocks, Jr., Mr. Dale E. Wal- 

ston. 
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University of Toronto: Mr. Edward J. Barbeau, Mr. Alan S. Deakin, Mr. Andrew J. 
Korsak, Mr. Donald R. Miller, Professor Kunio Murasugi. 

Tulane University: Mr. Sigmund N. Hudson, Mr. Harold D. Kahn, Mr. Harry T. 

Mathews, Mr. David E. Penney, Mr. Walter J. Schneider. 

Vassar College: Miss Sandra A. Hayes. 

University of Virginia: Mr. Alvin B. Owens, Mr. Thomas W. Page, Professor 
George K. Williams. 

Washington University: Mr. Richard A. Hunt, Mr. Arthur E. Obrock, Mr. Bobba S. 
Reddy. 

Washington State University: Mr. William S. Eberly. 
Wayne State University: Mr. John C. Cantwell, Mr. Ronald J. Knill, Mr. John O. 

Riedl. 
College of William and Mary in Norfolk: Miss Ellen Stone. 

Yale University: Mr. Laurence R. Alvarez, Mr. John D. Ferguson, Mr. John N. 
Frampton, Mr. Claude C. Thompson, Mr. Hoyt D. Warner. 

The Secretary announced that the following had been admitted to 
the Society in accordance with reciprocity agreements with various 
mathematical organizations: Wiskundig Genootschap te Amsterdam: 
Mr. Jan R. Strooker, Professor Jacobus H. Van Lint; Australian 
Mathematical Society: Dr. James H. Michael; Austrian Mathemati- 

cal Society: Professor Wolfgang Schmidt; Dansk Matematisk Foren- 
ing: Mr. Palle F. Schmidt; Deutsche Mathematiker Vereinigung: 
Professor Friedemann W. Stallman, Dr. Joseph F. Weier; Société 

Mathématique de France: Mr. Dean M. Abadie; Indian Mathemati- 
cal Society: Professor Ram Behari, Professor Phatik C. Chatterjee, 

Dr. Mohindar S. Cheema, Professor V. Ganapathy Iyer, Professor 
V. Sankriti Krishnan, Professor Bangalore S. Madhavarao, Professor 

Ratan S. Mishra; Mathematical Society of Japan: Professor Eizi 
Inaba, Professor Seizo Ito, Professor Hitoshi Iyoi, Professor Koiti 
Konda, Professor Tadao Kubo, Professor Katsuhiko Masuda, Pro- 

fessor Isamu Mogi, Professor Osamu Nagai, Professor Toshio No- 
naka, Professor Yuzo Utumi, Professor Hidekazu Wada, Professor 
Kaneo Yamada, Mr. Yukihiro Kodama, Mr. Satio Okada; London 

Mathematical Society: Dr. Robin O. Gandy; Dr. Mary R. Rees; 

Polskie Towarzystwo Matematiyczne: Professor Marek Fisz; Suomen 

Matemaattinen Yhdistys: Dr. Jussi I. Vaisala; Svenska Matematik- 

ersamfundet: Mr. Sture Danielson, Mr. J. Torgny Domar, Mr. Matts 
R. Essen; Unione Matematica Italiana: Dr. Ferrante Pierantoni. 

It was reported that J. M. Thomas represented the Society at the 
Fiftieth Anniversary Celebration of North Carolina College; Edward 
S. Hammond represented the Society at the Inauguration of Robert 

Edward Lee Strider II of Colby College; and Robert A. Rosenbaum 
represented the Society at the Silver Convocation of the University 
of Connecticut honoring President Albert N. Jorgensen, 
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The following committee appointments of the President were re- 
ported: to the Committee on Applied Mathematics: G. E. Forsythe 
and V. Bargmann; to the Committee to Select Speakers for Summer and 
Annual Meetings: Saunders MacLane; to the Committee to Select 
Speakers for Eastern Meetings: W. L. Chow; to the Committee to Select 
Speakers for Western Meetings: M. Heins; to the Committee to Select 
Speakers for Far Western Meetings: Ernst Straus; to the Committee 
to Select Speakers for Southeast Meetings: Kirk Fort; to the Visiting 

Lectureship Committee: J. L. Kelley; to the Committee to Select Four 
Members of the Council to run for the Executive Committee: Garrett 
Birkhoff, Edwin Hewitt, and F. Burton Jones; as tellers for the 1960 

election: P. C. Curtis and R. J. Blattner; Committee on the Cole Prize 
in Number Theory to be awarded in January 1962: D. H. Lehmer, 
Chairman, Serge Lang and S. Chowla; to the Joint Committee on the 
Doctor of Arts Degree: E. E. Moise, Chairman, M. M. Day, Paul 

Halmos, and A. D. Wallace; to the Invitations Committee for the Sum- 

mer Institute on “Applications of Functional Analysis in 1961,” P. D. 
Lax, Chairman, R. S. Phillips and Henry Helson; to the Committee to 

Nominate Officers and Members of the Council for the 1961 election: 
E. E. Floyd, Chairman, P. R. Halmos, Edwin Hewitt, W. T. Martin 
and Hans Samelson; to the Invitation Committee for a Symposium on 
Mathematical Problems in the Biological Sciences in April 1961: S. M. 

Ulam, Chairman, A. Bartholomay, R. Bellman, J. Jacquez, T. T. 
Puck, and Claude Shannon. 

The Secretary reported that the following have accepted invita- 
tions to deliver Hour Addresses before the Society: Gail S. Young, 
November, 1960, Vanderbilt University; Graham Higman, Novem- 

ber, 1960, Northwestern University; Helmut Wielandt and Lars 

Hérmander at the Annual Meeting, 1961; Henry Helson, November, 

1961, Santa Barbara, California; R. A. Beaumont, Far Western 

Meeting in Spring, 1962; Israel N. Herstein and James A. Jenkins, 
April, 1961, Chicago Meeting. 

Upon the recommendation of the Committee on Translations, the 
Council recommended to the Trustees that a new publication series 

devoted to the translation of papers in probability and statistics be 
established. The Council also recommended that starting January 1, 
1961, the Chinese Journal “ACTA MATHEMATICA SINICA” be 
translated in toto and published by the Society. 

The Council, acting upon the recommendation of the Joint Com- 

mittee on the Doctor of Arts Degree under the Chairmanship of 
Professor E. E. Moise, voted to support the action of the Board of 

Governors of the Mathematical Association of America in their rec- 
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ommendation that the degree of Doctor of Arts be established, in 
mathematics, at most of the universities which are qualified to grant 
the Ph.D. 

The Council approved a recommendation of the Transactions Edi- 
torial Committee that its membership be increased to five and elected 

Professor Michel Loéve to fill the three year term created by the 
Council's action. 

The Council voted to elect Professor L. J. Paige as Acting Secretary 
of the Society for the period February 1, 1961, to September 16, 1961, 
in the absence of Professor John W. Green. 

LOWELL J. PAIGE, 
Acting Secretary 
EVERETT PITCHER, 

Associate Secretary 

J. W. GREEN, 

Secretary 

ba 



THE FEBRUARY MEETING IN NEW YORK 

The five hundred seventy-seventh meeting of the American Mathe- 
matical Society was held at Hunter College, New York, New York, 
on Saturday, February 25, 1961. About 111 persons attended, includ- 
ing 100 members of the Society. 

By invitation of the Committee to Select Hour Speakers for East- 

ern Sectional Meetings, Professor John Wermer of Brown University 
delivered an address entitled Uniform approximation and maximal 
ideal spaces. Professor C. R. Adams presided at the session and intro- 

duced the speaker. 
There were thirteen contributed papers scheduled in a morning 

session and an afternoon session, over which Professors Selby Robin- 

son and James Singer presided. 
EVERETT PITCHER, 
Associate Secretary 
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RESEARCH PROBLEMS 

1. Richard Bellman: Differential equations. 

It was shown by Hermite and others that the study of the doubly- 
periodic solutions of a linear differential equation whose coefficients 
are analytic doubly-periodic functions of a complex variable is con- 
siderably simpler in many ways than the study of the periodic solu- 
tions of a linear differential equation with periodic coefficients. 

One should in this way be able to obtain excellent approximations 
to the solution of the Mathieu equation 

u’ + (a + bcos 2z)u = 0 

by considering it as a limiting form of the solution of 

u’ + (a+ bcn2z)u = 0 

as the modulus k? tends to zero. 
Are there doubly-periodic solutions of the inhomogeneous Van der 

Pol equation 

+ — 1)u’ + = acnasz, 

and can these be used to furnish approximations to the solution of 
the equation 

+ — 1)u’ + u = acos wz? 

(Received February 2, 1961.) 

2. Richard Bellman: Asymptotic control theory. 

Consider the problem of determining the minimum of 

T 

J(u) = f (u’? + u? + u4)di 
0 

over all functions u(t) for which «(0)=c. Write f(c, 7)=min, J(u). 

It follows from the functional equation approach of dynamic pro- 

gramming that f(c, T) satisfies the nonlinear partial differential equa- 

tion 
fr = min [v? + c? + ct + of-]. 

Since f(c, T) is monotone increasing in T and is uniformly bounded 
(as we see using the trial function 

cet 

1 1 e2T 
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the solution of the corresponding problem where the u‘ term is not 
present), we expect the limit function f(c) =limr.. f(c, T) to satisfy 

the ordinary differential equation 

0 = min + c? + c4 + 

Establish this and obtain an asymptotic expansion for f(c, T) and 
for the minimizing function u valid as T— ~. Generalize by obtaining 
corresponding results for the minimum of 

T 

J (tus, U2, , Un) -f - , Un, Ui, us, uv) 
0 

+ P(ur, u2,--- , un) dt, 

where Q is a positive definite quadratic form in u; and uj and P is 

a positive polynomial of higher degree. 
Results of this type are important in the modern theory of control 

processes. (Received February 2, 1961.) 



REPORT OF THE TREASURER 

The Treasurer this year again presents to the membership an 
abridged statement of the Society’s financial position, set up in semi- 
informal narrative style. A copy of the complete Treasurer’s Report 

as submitted to the Trustees and the Council will be sent to any 
member requesting it from the Treasurer at the Providence office. 
Moreover, the Treasurer will be happy to answer any questions mem- 
bers may wish to put to him concerning the Society’s financial affairs. 

The substantial increase in the General Funds of the Society 
($103,280.91) is largely a reflection of certain changes in the account- 
ing system—specifically, with respect to the valuation of equipment 
and the apportionment of overhead. On the same basis as last year 
the General Funds would have increased $23,093.58. 

Returns on invested funds this year have been at the rate of 4.47% 
computed on book value after deduction of custodial expense. This is 
very slightly less than last year. 

I 

A DESCRIPTION OF THE FINANCIAL POSITION OF THE SOCIETY 

AS OF May 31, 1960 

The Society had Cash on deposit 
In the Rhode Island Hospital Trust Company $ 22,458.53 

In interest-bearing savings accounts............ ; 1,450.02 
In petty cash and drawing accounts in Providence 

and Los Angeles.......... 1,955.00 
$ 25,863.55 

It had reserves invested until needed in Government bonds....... 246,846.71 

There was owing to it 

By the United States Government. .... .. $ 32,870.66 

By members, subscribers and others (less allowance 

for doubtful accounts). ..... 37 , 588 .97 

70 ,459 .63 
It had in stamps and in the postage meter a5 ; 1,161.64 

It had funds temporarily advanced to certain special accounts... ... . 4,713.04 

And it had invested in its Headquarters Building and Office Equipment 115,738.62 

Making a total of Current and Fixed Assets of....... $464,783.19 

The Society also held investment securities valued at... 380 413.01 

(The market value, May 31, 1960 was $440,281.19) - a 

Tora. Assets, therefore, were.................... . $845,196.20 

| 
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Offsetting these assets, the Society 

Owed members, subscribers and vendors 

Held funds received from various special sources to 

support particular projects, such as the Summer In- 

stitute, Summer Seminar, etc..................... 167 ,786.47 

Had advanced for recovery from future sales for various 

Society publications—Colloquium and Survey vol- 
umes, Birkhoff papers, Translation series, etc... .... 12,963.27 

Owed to the invested fund account............. red 21,270.19 
And held in its General Fund the sum of............ 255,923.07 

Thus accounting for all the CurRENT FunDs................ .... $464,783.19 

The Invested Funds represent the following: 

(1) The Endowment Fund, largely the gift of mem- 

bers about thirty-five years ago. . . $100,000.00 

(2) The Library Proceeds Fund, desired. wom the 

sale of the Society’s Library in 1950...... : 66 ,000 .00 

(3) The Prize Funds—Bécher, Cole, Meee. 6,575.00 

(4) The Mathematical Reviews Fund, a gift received 

in 1940 to make possible the establishment of 

(5) Reserves established by the Trustees to protect 

the life memberships formerly available, and as 

a “hedge” against investment losses........... 96,286.54 
(6) Other funds, derived mainly from bequests to the 

Society by members, which the Trustees were 

either required to invest or which they have in- 
vested at their option—the income being used 

for the general purposes of the Society... ..... 31,551.47 

Tota LiaBILities and Funp RESERVES, therefore, were . $845,196.20 

n............ $ 6,840.19 
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II 

An ACCOUNT OF THE FINANCIAL TRANSACTIONS OF THE SOCIETY 

DuRING THE FiscaL YEAR 1959-1960 

The Society has two types of receipts—funds for special purposes and projects, and 

the General Fund, from which are met the general operating expenses of the organiza- 

tion, including the publication of the Bulletin, the Proceedings, the Notices, and the 

Transactions. Income from sales of and subscriptions to these journals is placed in 

the General Fund, but in practice is allocated to the expenses of the journals them- 

selves. It is so treated in the following presentation: 

To meet its GENERAL obligations, the Society RECEIVED: 

From dues and contributions of individual members. $ 83,973.20 

From dues of institutional members. . . 35 , 350.00 

From dues of corporate members. . ; 17 ,000 .00 

From sales and support of scientific journals of the 

From recovery of indirect costs. . 48 ,628.89 

From investment and trusts . , 29 ,037 .56 

From publication charges... . 2,755.00 

From meeting fees..... . 3,050.50 

From miscellaneous sources. . . 2,609 .62 

These funds were EXPENDED 
For general administrative and meeting expenses. . . 48 ,628.89 

For expenses of scientific journals of the Society... . 336 ,987 .18 

In subsidies to non-Society publications. 12,095 .60 

For miscellaneous expenses. . . 3,409 .92 

Leaving an Excess oF INCOME OVER EXPENSES OF . Pierce ee $ 68,617.65 

(Which was added to the General Fund) 

Scientific Journals of the Society 

Income Expenses Deficit 

Bulletin. . . $ 12,231.32 $ 24,074.95 $11,843.63 

Proceedings . . . . 9,350 .87 36,602.83 27,251.96 

Notices... . 12,082.50 31,536.64 19,454.14 
Transactions. ... : 51,794.83 64 ,032 .87 12,238.04 

Mathematical Reviews. .. : 161,874.95 180,739.89 18,864.94 

Respectfully submitted, 

ALBERT E. MEDER, JR. 

TREASURER 

December 31, 1960 = 



RESEARCH ANNOUNCEMENTS 

The purpose of this department is to provide early announcement of significant 
new results, with some indications of proof. Although ordinarily a research announce- 

ment should be a brief summary of a paper to be published in full elsewh<ie, papers 
giving complete proofs of results of exceptional interest are also solicited. 

A NEW CLASS OF PROBABILITY LIMIT THEOREMS 

BY JOHN LAMPERTI! 

Communicated by J. L. Doob, December 30, 1960 

Suppose that {xX »} is a Markov process with states on the non- 

negative real axis and stationary transition probabilities. Define 

(1) ux(x) = — Xn)*| Xn = 2], k=1,2,---; 

we assume that for each k, u(x) is a bounded function of x. Assume 

also 

(2) lim y2(x) = B > 0, lim = a> — 

We shall say that the process { X,} is null provided that 

(3) lim — Pr(X; M)=0 

for all finite M. A class of examples satisfying all the conditions im- 
posed so far is afforded by Markov chains on the integers with transi- 

tion probabilities of the form 

1 1 

(4) = + + o(—)] > 0, = 1 — iff #0; 
Jj 

por = 1 — poo > 0. 

For such chains (random walks) the mull condition is known to hold if 
a>-—1/2(=—£8/2). In many (but, so far at least, not all) other cases, 

it can be shown that (3) follows automatically from the other hypoth- 

eses. 
For a process {X,} satisfying the above assumptions, there is an 

analogue of the central-limit theorem: 

1 Partially supported by the National Science Foundation. 
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THEOREM 1. 

(5) lim Pr(Xz y(n)") = f dt. 

B 2 

This seems to be a novel result even for random walks (despite the 
extensive recent development of their theory), and was reported in 
[3]. Under very slightly stronger hypotheses, however, much more is 

true. We shall call the process { X,} uniformly null provided the limit 
(3) holds uniformly in the initial state Xo. Again it can be shown that 
this often follows automatically; in particular, it holds for the random 

walks (4). For such processes we can prove 

THEOREM 2. For any t>0, 

(6) lim Pr(X S y(n)"?| Xo = x(n)"?) = pi(x, y) 
noo 

exists; the limit p,(x, y) 1s the transition-probability function for the 
diffusion process with backward equation 

(7) = Uz + r Ure (a and B are as in (2)) 
x 

and with a reflecting barrier (if necessary) at the origin. 

With the aid of these results it is easy to see that there is an 
analogue of the multi-dimensional C.L.T.; that is, the limit of 

can be calculated. It is then natural to seek the appropriate version of 
the Erdés-Kac-Donsker invariance principle [1]. Define a continuous 
function x™ by setting 

(n) X; i 

(8) x =— when t=—> isn, 
nil? 

and by linear interpolation for other ¢. Let C be the space of all con- 
tinuous functions x; on [0, 1] with x»=0, and endow C with the uni- 

form topology. Our main result is 

THEOREM 3. Under the conditions of Theorem 2, 

(9) lim Pr(f(x;) < a) = Pr(f(x) < @), 



1961] A NEW CLASS OF PROBABILITY LIMIT THEOREMS 269 

where x, is the diffusion process encountered in Theorem 2, and where 
f( ) is a functional on C continuous almost everywhere with respect to the 
measure of the process {x,}.? 

From this a large number of interesting limit theorems follow (as from 
Donsker’s theorem) by choosing specific functionals f(-). An im- 
portant example for which the limit distribution can be obtained 
more or less explicitly is the case f(x,) = max { x;| } 

Theorems 1 and 2 are reminiscent of a general limit theorem in 

Khintchine [2], and Theorem 3 of recent work of Prokhorov [4] and 
Skorohod [5]. None of these general results seem to be directly useful 

in proving the above theorems, however. Our proofs, together with 
additional results and applications, some extensions, and more com- 
plete references, will be published separately in the near future. It 
might be remarked that the methods are, for the most part, quite ele- 

mentary. Calculations with moments and use of the moment-conver- 
gence theorem are prominent in the proofs of Theorems 1 and 2, while 
that of Theorem 3 is analogous in large measure to Donsker’s pro- 
cedure in [1]. 

REFERENCES 

1. M. Donsker, Am invariance principle for certain probability limit theorems, 
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York, Chelsea, 1948 (reprinted). 

3. J. Lamperti, Limit theorems for certain stochastic processes, Abstract 569-32 

Notices Amer. Math. Soc. vol. 7 (1960) pp. 268-269. 
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STANFORD UNIVERSITY 

* It is understood that the diffusion process satisfies the initial condition x»=0 

and that the convergence in (9) is for all a for which the right-hand side is continuous. 



THE GENERALISED POINCARE CONJECTURE 

BY E. C. ZEEMAN 

Communicated by Edwin Moise, February 3, 1961 

THEOREM. If a combinatorial n-manifold has the homotopy-type of 
an n-sphere then it is homeomorphic to an n-sphere, provided n25. 

The above theorem was proved for 7 by Stallings [2]. His proof 
can be adapted to cover the cases »=5, 6 by means of the following 
lemma (the proof of which is given in [3]). 

LEMMA. Suppose M* is a q-connected combinatorial n-manifold, 
where gSn—3. Suppose A*% is a q-subcomplex, and B a collapsible 

subcomplex, both contained in the interior of M*". Then there exists a 

collapsible subcomplex C in the interior of a suitable subdivision ¢ M* 
of M*, such that CDe(A*+B) and dim(C—oB) Sq+1. 

The lemma is useful in a variety of contexts. For the application 

that we need here, choose A‘ to be the g-skeleton of M* and B to be 
a point; then a regular neighbourhood of C is an n-ball containing 

A‘, Therefore if there are complementary skeletons of M* with co- 
dimension at least 3, we can embed them in balls, and so, by expand- 

ing one of the balls, cover M* by two balls. The theorem follows as in 
[2, Lemma 3]. Complementary skeletons of codimension at least 3 

exist if and only if #25. 
In dimensions n= 3, 4 there is not quite enough elbow room for the 

proof to work, and so these two dimensions are the only outstanding 
cases for which the combinatorial form of Poincaré’s conjecture re- 
mains open. 

The combinatorial theorem above implies the analogous differen- 
tial theorem of Smale [1], because differentiable manifolds can be 
triangulated, but not conversely. 

BIBLIOGRAPHY 

1. S. Smale, The generalised Poincaré conjecture tn higher dimensions, Bull. Amer. 

Math. Soc. vol. 66 (1960) pp. 373-375. 

2. J. R. Stallings, Polyhedral homotopy-spheres, Bull. Amer. Math. Soc. vol. 66 

(1960) pp. 485-488. 
3. E. C. Zeeman, Isotopies of manifolds, to appear. 
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DERIVATIONS OF COMMUTATIVE BANACH ALGEBRAS 

BY PHILIP C. CURTIS, JR. 

Communicated by John W. Green, January 11, 1961 

In [2] Singer and Wermer showed that a bounded derivation in a 
commutative Banach algebra & necessarily maps % into the radical 

R. They conjectured at this time that the assumption of boundedness 
could be dropped. It is a corollary of results proved below that if W 
is in addition regular and semi-simple, this is indeed the case. 

What is actually proved here is that under the above hypotheses, 
if D is a derivation of & into C(@q),? dy the structure space of WU, then 

D is a bounded operator from & to C(@q). The topologies are the 
norm topology in % and the sup norm topology in C(#q). An applica- 
tion of the closed graph theorem shows that if D maps & into itself, 

D must be a bounded operator in Y, hence by the Singer, Wermer 

theorem, D=0. 

If & is regular but not semi-simple, then it follows from the above 
that D will map & into R provided that D maps ® into R. This the 
author can verify only if ® is nilpotent. 

In what follows & will always denote a regular, commutative, semi- 

simple Banach algebra with norm | -||. Applying the Gelfand iso- 
morphism we will identify &% and the corresponding subalgebra of 
C(@x). For convenience we also will assume % possesses an identity. 
It is easily seen that this doesn’t affect the generality of the results. 

Let Dt, be a maximal ideal of A, and @ the corresponding point in 
x. It is noted in [2] that there exists a derivation D of & into some 

semi-simple extension 8 of & iff MM, for some maximal ideal 
M,. In fact B may be taken to be B(#q), the ring of bounded complex 

functions on ®g. For if this condition is satisfied, following Singer 

and Wermer, we define by Zorn’s Lemma a nontrivial linear func- 

tional f, on & which annihilates M% and the identity. If we define D by 

Dx(¢’) = 0, € oy, ~ 

Dx(¢) = f,(x), 

it is easily seen that D is a derivation of A into B(®q). D is in general 

unbounded, but if DE x M., fs, and consequently D, may be chosen 

(via the Hahn-Banach Theorem) to be bounded. Modifying the 

1 This research was supported by the United States Air Force, Office of Scientific 

Research, under contract AF49(638)-859. 

2 C(4q) denotes the algebra of continuous complex functions on the space yg. 
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terminology of Singer and Wermer somewhat we refer to both the 
functionals f, and the associated operators D as point derivations. 
The main result of this note is that any derivation D of & into B(@q) 
is the sum of a bounded derivation and finitely many unbounded 
point derivations. 

The key to the argument is the following result from [1, §3] stated 
in a form suitable to our needs. 

THEOREM 1. Let ||-||1 be a norm on U under which % is a normed alge- 
bra. Let G be the class of open sets G for which there exist constants Mg 
satisfying 

Then there exists a finite subset F of Py, called the singularity set of the 
norm | -{[,, with the following two properties: 

(1) If G is open and G(\F= @, then GEG. 
(2) If GEG, then G\F= @. 

We now state and prove the result of the note. 

THEOREM 2. Let D be a derivation of U into B(@a). Then there exists 

a finite subset F of Dy and a bounded derivation D, of X into B(@a) such 
that tf then D.x(¢) =0, and For 

=D.x() is an unbounded point derivation. If for each 
DxCC(@q), then F= @ and D is a bounded operator. 

Proor. Re-norm & by defining for xE% ||x||,=||x|| +||Dx||.. where 
| y(¢)|. Clearly & is a normed algebra under || -||;. 

Therefore if F is the singularity set for | -{h,, we assert f,(x) =Dx(¢) 

is a bounded linear functional-on iff If then by the 

regularity of W& there exists h,GW% and a neighborhood V of F such 
that =1, h,(V) =0. Let Sy = {xEM: x(V) =0}. Choose an open 

set W, WI\F= @ such that if x€ Sv, then c(x)C W. Then by Theorem 

1, D is bounded on Sy. Hence if {x,} is any sequence in & tending to 
zero, then Sv and Consequently D(x,h,)—-0. But 

D(xnhs) = Dxn(h) Therefore f(x.) 

For the converse let H= {¢:f, is bounded on %}. Since ||Dx||,.< © 
for each xC UA, there exists by the principle of uniform boundedness, 
a constant M such that supsex | Dx(¢)| < M||x||. If HOF, pick 
an open set GCH, @o0€G and an element yCA for which y(G) =1 and 

y(@_— H) =0. Then if xE% and c(x) CG, we have xy=x. Therefore 

Dx =yDx+xDy and 

* ¢(x) denotes the carrier of the function x. 
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S + || 
This contradicts property (2) of Theorem 1. 

If F#@ and D is unbounded, we define D, by 

D,x(¢) Dx(¢), € F, 

= 0, E F. 

Again applying the uniform boundedness principle it follows that D; 
is a bounded operator from A to B(@q). The statement about D, is 
clear. 

To complete the proof we observe first that if ¢ is isolated in q, 
then ¢&F. In fact for such ¢, Dx(@) =0. For let ky be the character- 
istic function of {¢}. Then kg EA and for xCA D(kyx)(¢) =0. Hence 
Dx(¢) = —x(¢)-Dk,(@) =0. Consequently ,— Therefore if 
for each x© YU, Dx is a continuous function on ®q, it follows that 

|| Dx||..=supsceg—r | Dx(¢)| < This completes the proof. 

Coro.iary. Let % be a subalgebra of C(@x) containing A. If Bis a 

Banach algebra under some norm and D is a derivation of X into B, 
then D is a bounded operator. If D maps % into itself, then D=0. 

Proor. The first result follows by the closed graph theorem. An 

application of the theorem of Singer and Wermer [2] then yields the 

second. 
If now & is not semi-simple and D maps & into itself, then one 

may factor out the radical and apply the above corollary to prove that 
D maps & into R provided that D maps & into RK. If KR is nilpotent, 
this follows. For if x*=0, then 0=D*x*=n!(Dx)*+terms each of 
which involves a positive power of x, hence belongs to the radical. 

Therefore (Dx)*CR, and consequently DxE R. 
The validity of this result for non-nilpotent radicals is unknown to 

the author. Without some topological assumptions the result is of 
course false. Ordinary differentiation in the ring of formal power series 
is a derivation which does not map the radical into itself. 
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SLENDER GROUPS 

BY R. J. NUNKE! 

Communicated by R. S. Pierce, February 9, 1961 

Let P be the direct product of countably many copies of the inte- 
gers Z, i.e., the group of all sequences x= (x, x2, - - - ) of integers 
with term-wise addition; and, for each natural number 2, let 6* be 

the element in P whose mth coordinate is 1 and whose other coordi- 
nates are 0. Lo§ calls a torsion-free abelian group A slender if every 
homomorphism of P into A sends all but a finite number of the &* 
into 0. The concept first appeared in [3]. E. Sasiada [6] has shown 
that all reduced countable groups are slender. In this note I give a 
new description of the slender groups and apply it to show that cer- 

tain classes of groups are slender. All groups in this paper are abelian. 
A group is slender if and only if every homomorphic image of P 

in it is slender. It is therefore desirable to know the structure of the 

homomorphic images of P. 

THEOREM 1. A homomorphic image of P is the direct sum of a divisi- 
ble group, a cotorsion group, and a group which is the direct product of 

at most countably many copies of Z. 

A group A is a cotorsion group if it is reduced and is a direct sum- 

mand of every group E containing it such that E/A is torsion-free. 
These groups were introduced by Harrison [4]. A special case of 
Theorem 1 (namely the structure of P/S where S is the direct sum) 

was proved by S. Balcerzyk [2]. 
A torsion-free cotorsion group contains a copy of the p-adic integers 

for some prime ?. For each prime p the p-adic integers are not slender: 
the homomorphism x— sends 5‘ into p‘. Theorem 1 and the 
remark preceding it then give 

THEOREM 2. A torsion-free group is slender if and only if it is reduced, 

contains no copy of the p-adic integers for any prime p, and contains no 

copy of P. 

A group is called &,-free if every at most countable subgroup is 

free. 

Coro._ary 3. An &i-free group is slender if and only if it contains 

no copy of P. 

1 This work was supported by the National Science Foundation research contract 
N.S.F.—G11098. 
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A group A is a B-group if Ext(A, T) =0 for every torsion group T 
and a W-group if Ext(A, Z) =0. The names for these classes of groups 
are due to J. J. Rotman. All B-groups and W-groups are §:-free. 
Baer showed in [1] that P is not a B-group. It is also true that P is 
not a W-group. Since every subgroup of a B-group (W-group) is a 

B-group (W-group) we have 

THEOREM 4. Every B-group and every W-group is slender. 

This theorem was first proved (with an additional condition on the 

B-groups) by Rotman [5]. 
The above scheme can be applied to various other classes of groups, 

for example the torsion-free groups such that Ext(A, Z) is countable. 
The property is hereditary, every such group is N:-free, and P is not 
one of them. The structure of Ext(P, Z) is completely known. Let Q 
be the additive group of rational numbers and c the cardinal of the 
continuum. 

THEOREM 5. Ext(P, Z) is the direct sum of 2° copies of Q and 2° 
copies of Q/Z. 
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CONVERGENCE OF STOCHASTIC PROCESSES 

BY V. S. VARADARAJAN?! 

Communicated by J. L. Doob, December 30, 1960 

1. Many problems in probability theory, when properly formu- 
lated, appear as problems in the theory of convergence of stochastic 

processes. The need for such a theory was demonstrated by the early 
results of Doob [4], Donsker [5] and others. In their fundamental 
papers, LeCam [10] and Prohorov [11] developed several aspects of 
such a theory. Their work was based on, and was a development of, 

the earlier work of A. D. Alexandrov [1] and Kolmogorov [9]. How- 
ever, several questions which naturally arise were either not discussed 
or discussed only under unnecessary restrictions. The following re- 
marks contain an outline of a general theory of measures on topologi- 
cal spaces. Only the statements and the appropriate formulations of 

the main results are given. The detailed proofs will be published else- 
where. 

2. Let X be a topological space and C(X) the Banach space of 

bounded real-valued continuous functions on X. S is the smallest 
a-field of subsets of X with respect to which all the elements of C(X) 

are measurable. By measure we mean probability measures defined 
on S and these arise, in the classical manner following F. Riesz, from 

linear functionals ¢ defined on C(X). Given a nonnegative linear func- 

tional @ on C(X) with (1) =1, we have the representation 

(1) = f fan 

for all fEC(X) with a (unique) measure p, provided ¢ is o-smooth. 
i.e. for any sequence {f,} of elements of C(X), | 0 pointwise over 
X, (f2)—0. The set of all measures is denoted by M(X), or simply 

by M, when there is no doubt as to what X is. 
M is a subset of the dual-space of C(X) and as such inherits the 

weak topology of the dual of C(X). Our main concern is with the 

structure of this topology over M and its subsets. The two main 
problems examined are the metrizability of M and the structure of 

1 This work was done during 1958-1959 while the author was in the Indian Sta- 

tistical Institute, Calcutta, but due to diverse reasons the announcement was delayed 

up to now. 
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compact subsets of M. 
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3. We begin with a classification of measures. A measure y is called 
t-smooth, if 

(2) J 0 

for every net? {f;} | 0 pointwise over X. The set of all r-smooth meas- 
ures is denoted by M,. A measure uy is called tight if 

fi x 

is continuous on the unit sphere of C(X) with respect to the topology 
of uniform convergence on compacta. The set of tight measures on 
X is denoted by M;,. Clearly M.(X)CM(X)CM(X). 

THEOREM 1. In order that a measure pu be t-smooth it is sufficient 
that there exists a closed Lindeléf* subset C of X such that ps4(X —C)=0, 

ba denoting the inner measure induced by p. If X is paracompact, this 
condition is necessary and sufficient. 

In particular, if X is a metric space, pu is r-smooth if and only if 
there exists a closed separable subset C of X such that up(X —C) =0. 

It is interesting to examine the conditions under which we have 
the relation 

M = M.. 

From Theorem 1 it follows at once that this is the case as soon as X 
is a separable metric space. 

THEOREM 2. If X is a metric space, M(X)=M,(X) if and only if 
M(Xo) = M,(Xo) for every closed discrete subspace Xo of X. 

In other words M(X) = M,(X) if and only if the only measures de- 
fined on closed discrete subspaces of X are those with mass concen- 
trated on a countable set. It is well known [2, p. 187] that this ques- 
tion is intimately related with some questions in the theory of sets. 
In particular, it follows, on assuming the continuum hypothesis, that 

M(X) = M,(X) for any metric space of cardinality less than or equal 
to that of the continuum. 

THEOREM 3. A measure p is tight if and only if for each e>O there 
exists a compact set K.CX such that 

us(X — KD <e. 

2 See [8] for this and other terminology concerning topological spaces. = 
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If X is a complete metric space, M:=M,. In particular if X is a 
separable and complete metric space, M= M,= M,. 

4. The questions of metrizability and compactness in M were first 

examined by P. Levy in the case when X is the real line (cf. for in- 
stance [6]) who proved that M(X) in this case is a separable and 

complete* metric space. When X is an arbitrary topological space, 
an examination of the imbedding 

(3) bz, 

which sends xC X into the measure yp, concentrated at x, reveals that 

for the metrizability of the space M(X) one must have (i) X is 
metrizable and (ii) M(X)=M,(X). In view of this and Theorem 2 

it is thus natural to attempt to prove that M, is metrizable whenever 
X is. We have 

THEOREM 4. If X is a metric space, M,(X) is metrizable. M,(X) is 
metrizable as a complete metric space when and only when X is a com- 
plete metric space. 

For the completeness part we note that the imbedding (3) of X 

into M,(X) sends X onto a closed subset of M,(X). On the other 
hand, if X is complete, we introduce BX, its Stone-Cech compactifica- 
tion (X CBX). By a general theorem due to Cech [3], X is a G; in 

8X. Any measure uw on X gives rise to a measure @ on BX for which 

p(BX —X) =0. It can be shown that Z is regular (in the sense of [7, 

p. 224]) if and only if u«€ M,(X) and that the regular measures on BX 
are precisely the t-smooth measures on BX. We thus obtain an im- 

bedding of M,(X) into M,(8X). It can further be proved that this 
is a homeomorphism and that the image of M,(X) is a G; in M,(6X) 

(which is a compact Hausdorff space incidentally). Cech’s theorem 
now assures us that M,(X) can be made complete under an equivalent 
metric. 

We proceed next to a study of the compact subsets of M. In view of 
the nature of this communication we shall restrict ourselves to the 
case of greatest interest from the point of view of applications. A set 
DCM(X) is called tight iff for each €>0 there exists a compact set 
K,.CX such that 

(4) Sup us(X — K,) <«, 

It is clear that only subsets of M,(X) can be tight sets; further, 

* Completeness, here as elsewhere, is always completeness under some equivalent 

metric. 
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it can be proved that a set DCM, is tight if and only if the corre- 
sponding set of linear functionals are equicontinuous at 0 in the 
topology (over the unit sphere of C(X)) of uniform convergence on 
compacta. The following theorem is easy to prove. 

TuHeoreoM 5. If D is tight, then DC M;, and is compact. 

In [9] Kolmogorov raised the interesting question as to whether 
the converse of Theorem 5 is true. That this is so, when X is a separa- 
ble and complete metric space, was proved by Prohorov [11]. The 
following theorem settles the question when X is an arbitrary metric 
space. 

THEOREM 6. If X is a metric space and D is a compact subset of Mz, 
then D is a tight set. 

In view of well-known Ascoli theorems [8, p. 233] the proof proceeds 
by showing that the map 

Sfdu 

of C;(X)XD into the reals (C;(X) being the unit sphere of X under 

the topology of uniform convergence on compacta) is continuous. 
We note now that D is a metric space (Theorem 4) and hence con- 
vergence on D is of a sequential nature. The desired continuity is now 
obtained by using a theorem of LeCam [10] (which is essentially 
Theorem 6 for the case when D consists of a convergent sequence 

plus its limit point). 
It might be remarked that when X is not a metric space there are 

examples of compact subsets D of M; which are not tight. 

5. Applications to stochastic processes arise when we regard a 

stochastic process as a measure on a topological space X of functions. 

If 

(5) é, f1, £2, 

is a sequence of stochastic processes, the convergence of £,, as n> ©, 

to £ then implies the convergence of the distribution of g[é,] to that of 
g[] for all continuous functions g on X. Typical problems are those 
in which X is a separable Banach space and £ is a random variable 
with values in X which is normally distributed i.e. for any bounded 
linear functional x* on X, x*(£) is normally distributed. We then con- 

sider the central limit problem. Let 

(6) M1, 
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be independent identically distributed X-valued random variables 
with E(n,) =0. If 

1 
= —(m+--- +1); 

n 

under what conditions do the distributions of £, converge in X? When 
X is a Hilbert space, Prohorov proved [11] that E]|nd|?< © was a 
necessary and sufficient condition. The general problem when X is 
an arbitrary separable Banach space remains unsolved, but the fol- 

lowing theorem is one of several special results: 

THEOREM 7. If X is the space |, (of all sequences 

a = (6: 

with |an| < © for which |\a||= >>. |an|), then 

(7) [Var < 

is @ necessary and sufficient condition that £, should converge in dis- 
tribution. 

Here n denotes the mth component of m and Var denotes vari- 
ance. 
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A CONTINUOUS FUNCTION WITH TWO 
CRITICAL POINTS 

BY NICOLAAS H. KUIPER! 

Communicated by R. P. Boas, February 6, 1961 

A real C*-function f: X->R on an n-dimensional C*-manifold with 
s20, is called C*-nondegenerate C*-ordinary at a point pC X, in case a 
system of C*-coordinates (C*-functions) - - - , exists, which 
defines a C*-diffeomorphism x of some neighborhood V(p) of p into 
R*, and such that for some constant A,>0 

forg € V(p) C X. 

If C*-coordinates and A,>0 exist such that 

= 0, t=1,---,; 

2 r n 

1 r+1 

then the function is called C*-critical of index r and C*-nondegenerate 
at p. 

A function which is C*-nondegenerate at every point pCX is called 
a C*-nondegenerate function. 
We will restrict our considerations to the topological case s=0 of 

continuous functions on topological manifolds and we will omit C® 
from the notation in the sequel. By function we will mean continuous 
function, etc. 

A compact manifold without boundary is called a closed manifold. 
A nondegenerate function on a closed manifold has at least one criti- 
cal point ; of index m and one critical point po of index 0, correspond- 

ing respectively with the maximum and the minimum of the func- 
tion. We prove the 

Tueorem. If X is a closed n-dimensional manifold and f: XR a 
continuous nondegenerate function with exactly two critical points, then 

X is homeomorphic to the n-sphere S*.* 

1 The author has a research grant from the National Science Foundation, NSF- 

G-13989. 
2 Reeb [2] proved the corresponding theorem for the differentiable case. Morse [1] 

proved that X is a homotopy-sphere, and he also has a proof of the theorem we pre- 

sent (unpublished as yet). 
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(1)6(p) = = 1,---, m; = —S(p)} 
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Proor. A. The local droppings T,. We place ourselves in the as- 
sumptions of the theorem and we call the function f “height.” We 
consider a coordinate system for every point pCX, obeying (1) or 

(2), but for which moreover the image x,(V(p)) CR is the open - 

ball 

(3) 

where the “polar coordinates” r (radius) and w (unit vector) are de- 

fined by 

n 1/2 

j 

For any such coordinate system «x: V(p)—>R* we also define the open 

set 

(5) Up) = {al CX, < th. 
Next we define a homeomorphism 7, for every pCX. If p is an 
ordinary point then we proceed as follows: 

Let h(t) be a real C*-function with the properties 

= 0, 24, 

0, t| <4, 6) | 
=h0), $1, 

| < 1/2, any t. 

The homeomorphism T, is given by: 

<= V(P), 

(7) = — b(r(Q)) 
T,(9) = 9, q V(p). 

As the Jacobian of the corresponding C*-transformation of the co- 
ordinates for gE V(p) does not vanish, and T(g) =q for q&U,(p), it 
follows that T, is a global homeomorphism of X. Observe that the 
continuous function 

q—f(T»(q)) 

takes the value zero for g&U,(p) and is negative for gq@U,(p). It 
takes a negative maximal value on the set U;(p), the closure in X of 
U;(p). Under T, no point is mapped into a higher level of f, and every 

point of U,(p) is mapped into a lower level. 
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If p is a critical point of index n we use a real C*-function k(é) with 
the properties 

= for = 4, 

k(é); = 21, 05/31, 

>t, <4, 

> 0, iz 0. 

(8) 

The homeomorphism T, is now defined in terms of polar coordinates 

(4) by: 

«(T,(q)) = w(g) f V(p), 
(9) r(T9(q)) = R(r(q)) ore VD) 

T,(q) = for g € 

The restriction of T, to U:(p) is represented by a geometrical multipli- 
cation with factor 2 in coordinate space. 

The point p and every point ¢€& U,() is invariant under T,. Every 
other point in X is mapped into a lower level. 

In the case of critical point of index zero we use the function k~, the 
inverse of k, and proceed analogously. 

B. The global dropping T. Under the given assumptions there is a 

critical point p; of index m (maximum), a critical point fo of index 0 
(minimum), and no other critical point. Choose a finite number of 
coordinate systems «x,, and homeomorphisms 7,,, 7=0,---, L, of 
the kinds mentioned above, such that: 

L 

but 

L 

(10) U [U2(po) U U2(p1)] = (void). 
im? 

(Compare the use of a partition of unity.) 

Let 

(11) T = 5,_, °° * TT 

Then T: XX is a global homeomorphism with exactly two invariant 
points, namely po and p,, which maps every other point into a lower level: 

(12) T(po) = po; T(h:) = p13 SfQ) forgoX — po— pr 



284 N. H. KUIPER [May 

As the set W,.= X — U2(p:) — U.(po) for 0<€<1, is compact, the non- 

negative function 

f@ — f(T@) 

has a minimal value for g@W, and this minimal value is positive. 
Call it 6,>v and let N, be an integer such that 

If we apply powers with consecutive exponents of the homeomor- 
phism 7, to any point g€ W,, then for some exponent NSN, we will 
find 

T*(q) € Udo) 

because with each new application of T to the result obtained in the 
last step, we obtain a new point which is at a level at least 6, lower, 
and after N, steps the point would have dropped totally more than 
the total range of the function f over X. On the other hand, once the 

resulting point isin U,(o) any further application of T will give a new 
point also in U.(po), because T acts in U,(po) as a geometrical multi- 

plication with factor 1/2. Consequently 

(14) — Ux(p1)) C 

and taking complements 

(14)c T¥-(U2(p1)) D X — po). 

Thus X is covered by two discs: 

(15) TNe(U2(p1)) U = X 

and our theorem can be considered as a consequence of a theorem of 
Morton Brown. However, we like to present a complete explicit proof: 

C. The homeomorphism 

As (14) holds for any 0<e<1, it follows that for any g*o there 
exists a smallest number N, such that 

D> for N’ = N, 

or 

(16) 

Let xi: U2(p1)—>R* be the restriction of the coordinate system at 
the critical point ~: to the open set U2(f:). Observe that for any 

(17) = 0. 

— 
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If N’2N=N, then in view of (17) we have in the vector space R*: 

Hence there exists a mapping «x: (X —p»)—>R* well defined by: 

(18) x(q) = N’ 2 N,. 

x is clearly locally a homeomorphism. x is onto the set Uji, 24«:(U2(p1)) 
=R*. If gq and gq: are both different from fo then, for 

T-*"(q2) 

and consequently «(g:) #x(g2). So x: (X —po)—>R* is a homeomor- 

phism and X is homeomorphic to the one point compactification of 
R*, that is S*. 
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TOPOLOGICAL EQUIVALENCE OF A BANACH SPACE 
WITH ITS UNIT CELL 

BY VICTOR KLEE! 

Communicated by Mahlon M. Day, January 3, 1961 

Several years ago [8] we proved that Hilbert space is homeo- 
morphic with both its unit sphere {x:||x|]=1} and its unit cell 
{ x: ||x|| $1}. Later [9] we showed that in every infinite-dimensional 

normed linear space, the unit sphere is homeomorphic with a (closed) 
hyperplane and the unit cell with a closed halfspace. It seems proba- 
ble that every infinite-dimensional normed linear space is homeo- 
morphic with both its unit sphere and its unit cell, but the question 

is unsettled even for Banach spaces. Corson [4] has recently proved 
that every No-dimensional normed linear space is homeomorphic with 
its unit cell. In the present note, we establish the same result for a 

class of infinite-dimensional Banach spaces which is believed to include 
all such spaces. It is proved to include every infinite-dimensional 
Banach space which is reflexive, or admits an unconditional basis, or 

is a separable conjugate space, or is a space CM of all bounded con- 
tinuous real-valued functions on a metric space M. 
We employ the following tools: 
(1) If Hand Fare Banach spaces and wu is a continuous linear trans- 

formation of E onto F, then there exist a constant m€ ]0, o | and 

continuous mapping v of F into E such that uvx=x, vrx=rvx, and 
\|vx|| <ml|x|| for all xGF and rER (the real number space). If G is 
the kernel of u and hy=(uy, vuy—y)C FXG for each yEE, then h 
is a homeomorphism of E onto FXG. Let ||(p, g)|| =max (sll, |Iql|) 

for all (p, g) FXG, and let zy for all yCE. Then is 
a homeomorphism of E onto FXG which carries the unit cell of E 
onto that of FXG. 

(2) If S is a closed linear subspace of a Banach space E, then E is 

homeomorphic with the product space (E/S) XS and the unit cell of 
E is homeomorphic with the unit cell of this product space (with 

respect to any norm compatible with the product topology). 
(3) In each infinite-dimensional normed linear space, the unit cell 

is homeomorphic with a closed halfspace. 
(4) If Q is an open halfspace in an infinite-dimensional normed 

linear space and # is a point in the boundary of Q, then QU {p} is 

homeomorphic with Q. 

1 Research Fellow of the Alfred P. Sloan Foundation. 
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(5) For each fE L*J0, o[ and ¢€ [0, 1i[, let the function 
fiEL?]0, be defined as follows: fx=tf(tx) for 1[; fx 
=f(x+t—1) for x€[1, [. Then with n(f, =(/:, the transforma- 
tion isa homeomorphism of L?]0, [x [0, 1[ onto (L?]0, [x Jo, 1] 
U(L*[1, © [x {0}). 

The existence of v and m as described in (1) follows from a theorem 
of Bartle and Graves [1, p. 404] (see also Michael [13]). It is easily 
verified that hk is a homeomorphism [10], and homogeneity of h 
follows from that of u and v. Thus the transformation £ is also homo- 
geneous. To complete the proof of (1) it suffices to observe that 

< (l|ul| +1)||y|| for all yEE. Proposition (2) 
results from applying (1) to the canonical mapping u of E onto E/S. 

The result (3) appears in [9]. For (5), see page 29 of [8]. A theorem 
much stronger than (4) is proved on pages 12-28 of [8]. When the 
space is nonreflexive or is an (J?) space, (4) is explicitly a corollary of 

(3.3) on page 27 of [8]. In the general case, it follows from the reason- 
ing (though not explicitly from any statement) in [8]. Also, a proof of 
(4) is outlined in [11]. 
A normed linear space J will be called compressible provided the 

space JX[0, 1[ is homeomorphic with the space (JX]0, 1[) 
\U(WxX {0}) for some closed linear subspace W of infinite deficiency 
in J. (We see by (5) that Hilbert space is compressible.) A space is 

h-compressible provided it is homeomorphic with some compressible 
normed linear space. 

THEOREM. Jf a Banach space B admits a continuous linear trans- 
formation onto a Banach space E which contains an h-compressible 
closed linear proper subspace S, then B is homeomorphic with the unit 

cell of B. 

Proor. Let G denote the kernel of the continuous linear trans- 

formation of B onto E. By (1), B is homeomorphic with the product 
space P= E XG and the unit cell of B is homeomorphic with the unit 

cell U of P. To establish the theorem, it suffices to show that P is 

homeomorphic with U. Since S is a closed linear proper subspace of 
E, the subspace T=SX {0} must be in a closed hyperplane V in P. 
The unit cell U of P is homeomorphic with Vx [0, 1[ by (3), and V 

is homeomorphic with (V/T) XT by (2), so U is homeomorphic with 
(V/T) X(T [0, 1[). Clearly P itself is homeomorphic with Vx JO, 1[ 
and hence with (V/T)X(TX]0, 1[), so to complete the proof it 
suffices to show that TX[0, 1[ is homeomorphic with TX ]o0, 1[. 
Since T is h-compressible, there exist a Banach space J homeomor- 
phic with T and a subspace W of infinite deficiency in J such that 
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JX [0,1 [is homeomorphic with (J x ]0, 1[)U(Wx {0}). Let u denote 
the canonical mapping of J onto J/W and then let » and h be as in 
(1) above. Then & is a homeomorphism of J onto (J/W) XW, and 
since hw=(0, 00—w) for all wOW (where @ is the neutral element 

of J/W), it follows that hW={@}xW. Consequently the space 
(Jx 1) U(Wx {0}) is homeomorphic with 

(J/W) x W x Jo, 1[ U {0} x wx {Oo}, 
which in turn is homeomorphic with 

W X x Jo, U {0} x {o}). 

Since J/W is infinite-dimensional, it follows by (4) that the set 
above is homeomorphic with 

W X x Jo, 1D, 

and hence with JX JO, 1[. Reviewing the information now assembled, 

we see that 7X [0, 1[ is homeomorphic with Tx ]O, 1[, and hence 
that U is homeomorphic with P. This completes the proof of the 
theorem. 

CorROLLary. If an infinite-dimensional Banach space B satisfies at 
least one of the following conditions, then B is homeomorphic with its 
unit cell: 

(a) B ts reflexive; 

(b) B is a linear subspace of a Banach space which admits an uncon- 
ditional basis; 

(c) B is a norm-separable w*-closed linear subspace of a conjugate 
space; 

(d) B is the space CN of all bounded continuous real-valued functions 
on a normal space N which contains a closed infinite metrizable subset. 

Proor. In view of the theorem and the fact (by (5)) that Hilbert 
space is compressible, it suffices in each case to produce a continuous 
linear transformation of B onto a Banach space E which contains 

a closed linear proper subspace S which is homeomorphic with Hilbert 

space. When B is reflexive, let E=B and let S be an infinite-dimen- 

sional separable closed linear proper subspace of E. Then S is reflexive 
and hence (by a theorem of Kadeé [7]) homeomorphic with Hilbert 

space. 
If B is a subspace of a space which admits an unconditional basis, 

a theorem of James [5] and Bessaga and Pelczyfiski [2] asserts that 
either B is reflexive or some linear subspace of B is linearly homeo- 
morphic with the space (/) or the space (co). But the latter two spaces 
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are known to be homeomorphic with Hilbert space (by results of 
Mazur [12] and Kadeé [6]) and the desired conclusion follows. 
Now suppose B is a separable conjugate space or, more generally, 

that B is a norm-separable w*-closed linear subspace of a conjugate 
Banach space L*. Let fEB~r~ {o}, x€L with fx =1, and 
S={gCE:gx=0}. Then S is a w*-closed linear proper subspace 
of B, and must be homeomorphic with Hilbert space by a theorem 
in [10]. Consequently, B is homeomorphic with its unit cell. 

Finally, let B and N be as in (d). Then there is a countably infinite 
closed subset Z of N which consists of either a discrete set or a con- 

vergent sequence together with its limit point. For each @CCN let 
up=|Z €CZ. Then u is a continuous linear transformation of CN 

onto CZ, and CZ is equivalent to either the space (m) or the space 
(co). In either case, CZ has the h-compressible space (co) as a closed 
linear proper subspace, and the desired conclusion follows upon apply- 
ing the theorem. 

Note that the topological equivalence of every infinite-dimensional 
Banach space with its unit cell would be implied by the generally 
expected affirmative answer to the following question: Are all in- 
finite-dimensional separable Banach spaces homeomorphic? Recent 
results on this problem have been obtained by Bessaga and Pelczyfi- 
ski [3]. 

At least for reflexive spaces, the corollary above can be signifi- 
cantly improved. The method is that of [8, pp. 30-31] in conjunction 
with the above techniques and the result is as follows: 

THEOREM. Suppose E is an infinite-dimensional reflexive Banach 
space and C is a closed convex subset of E which has nonempty interior. 
Then C is homeomorphic with E and the boundary of C is homeomor phic 
with E or with EXS* for some finite n and n-sphere S*. 

The following problems seem worthy of mention: Are all infinite- 

dimensional separable Banach spaces h-compressible? (An affirmative 
answer implies that every infinite-dimensional Banach space is 
homeomorphic with its unit cell.) Are all infinite-dimensional Banach 
spaces compressible? Are No-dimensional normed linear spaces com- 
pressible? Note that for Hilbert space, the compressibility was 
achieved by means of a continuous family of affine homeomorphisms. 
How generally is this possible? 
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ORTHOGONAL GROUPS OVER LOCAL RINGS 

BY WILHELM KLINGENBERG 

Communicated by J. Dieudonné, October 28, 1960 

In an earlier paper [5] we have determined the structure of the 
linear groups over a local ring. In this note we continue the study of 

the classical groups over a local ring with the investigation of the 
orthogonal groups. 

Our main result (cf. Theorem 6 below) is a complete description 

of the invariant subgroups of an orthogonal group of noncompact 
type (i.e., of index 21) over a local ring L of characteristic #2. Cer- 
tain low dimensional cases being excluded, the result reads as follows: 

The set of invariant subgroups splits into disjoint classes C(J) which 
are in one-to-one correspondence with the ideals J of L. Each class 
has a greatest and a smallest element, with respect to the inclusion, 

which are represented by certain congruence subgroups modulo J, 
and every group between the greatest and the smallest element of 
€(J) belongs to C(J). 
A similar result does hold for the set of invariant subgroups of the 

commutator group of the orthogonal group; in this case, the structure 

of the classes C(J) is very simple since each class contains at most 
two elements, and then the smaller element has index 2 in the greater 

one. 
Hence, it turns out that the structure of the orthogonal groups 

under consideration is of the same type as the structure of the linear 

groups over a local ring, cf. [5]: Here too the invariant subgroups 
split into classes which correspond to the ideals of the local ring, and 

each class has a greatest and a smallest element, represented by cer- 

tain congruence subgroups, and each group in between belongs to 
the class. One may expect, therefore, that this is the typical arrange- 
ment of the invariant subgroups of a classical group over a local ring. 

If the local ring L possesses no ideals apart from L and 0, ie., 
if L is a field, then we get the results of Dieudonné [3; 4] on the struc- 

ture of the orthogonal groups over a field. 

1. Basic definitions. A local ring is a commutative ring L with unit 
and a greatest ideal JL. L*=L—TI forms a group under the multi- 
plication. The homomorphic image of a local ring, if it is not the zero 
ring, is again a local ring. L/I is a field. We assume: char(L/I) #2. 

An (n-dimensional) vector space over L is an L-module isomorphic 

to L*. Let ® be a symmetric bilinear form on a vector space. ® deter- 
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mines an homomorphism ge of the vector space into its dual, cf. 

Bourbaki [2]. ® is called nondegenerate, if ge is an isomorphism. 
A metric vector space (over L), denoted by V or V(L), is a vector 

space over L on which there is given a nondegenerate symmetric 
bilinear form ®. 

A subspace U of V is a submodule of V (considered as L-module), 
with the following properties: (i) U is a direct summand, (ii) ker- 
nel(gsiv: U-+U*) is a direct summand. 

Note. If L isa field, each submodule of V is a subspace. To get uni- 

form definitions and results we assume: dim V 23. For a subspace U 
the orthogonal subspace U® is the submodule annulled by geU. U? is 

a subspace. We have: dim U+dim U°=dim V. U”=U. 
A subspace U is called isotropic, if kernel(gsjv) #0, and totally 

isotropic, if kernel (gs;v) = U. Examples of nonisotropic subspaces 
(i.e., subspaces U with kernel(gs,v) =0) are V and 0=0-space. 
A vector XE V is called nonisotropic, if the submodule (X), gener- 

ated by X, is a nonisotropic subspace ~0. X is called isotropic, if (X) 
is isotropic. A nonisotropic vector X is characterized by the proper- 

ties: X ~0 mod I and ®(X, X)€L*. An isotropic vector is character- 

ized by: X €0 mod J and ®(X, X) =0. 
An isomorphism of a space V into a space V’ is called isometry. 
The group of isometries of V onto V is called orthogonal group of 

V, O(V). The subgroup of isometries with determinant one is called 
special orthogonal group of V, SO(V). We have: center O(V) = {1, —1}. 
Let J be an ideal of L with JCJ. The natural homomorphism 

gs: L—L/J determines a homomorphism (also denoted by gz) 

(1) gr: V(L) > V(L/J), 

where V(L/J) is a space over the local ring L/J with a nondegenerate 
symmetric bilinear form hjy® characterized by: (hy®)(gsX, g7Y) 
=gyP(X, Y) for (X, YYEV XV. We will permit in (1) also the ideal 

J=L by putting V(L/L) =0=0-space. 
The homomorphism g,, (1), determines a homomorphism 

(2) hy: O(V(L)) — O(V(L/J)) 

with the characteristic property: hyogy=gso for s©O(V). Here 
O(V(L/L)) denotes the unit group E. 

The congruence subgroup mod J of O(V), O(V, J), is the invariant 
subgroup consistingof theelements O( V) with center O(g;V). 

SO(V)MOC(V, J) iscalled special congruence subgroup mod J of SO(V), 

notation: SO(V, J). 
Nore. O(V, L)=O(V). SO(V, L)=SO(V). O(V, O)=center 

O(V). Here O denotes the zero ideal. 
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For each ideal J of L the congruence commutator subgroup mod J 
of SO(V), Q(V, J), is defined as the mixed commutator group 
comm(SO(V), SO(V, J)). Q(V, L), ie., the commutator group of 
SO(V), will also be denoted by Q(V). Note: Q(V, 0) =E. 

2. The theorems of Witt and Cartan-Dieudonné. A first character- 
ization of the congruence commutator groups. We have the following 
theorem which reduces to the theorem of Witt if L is a field: 

THEOREM 1. Let V and V’ be isometric spaces. If a: U-+V’' is an 
isometry of a subspace U of V into V’, then there exists an isometry of 
V onto V’ which is an extension of o. 

As a consequence we have that all maximal totally isotropic sub- 
spaces of V have the same dimension; this dimension is called the 
index of V, notation: ind V. We have: 2 ind VSdim V. If U is a non- 
isotropic subspace, then we have V=U+U* (direct sum). The 
a with respect to U is the isometry e€ O(V) given by «| U=1, 
o| U°= —1. 

Especially important are the symmetries with respect to a (non- 

isotropic) hyperplane, i.e., a subspace of codimension 1. Generalizing 
a result of E. Cartan and Dieudonné we have the 

THEOREM 2. Each element s©O(V) is the product of at most 2n—2 
symmetries with respect to a hyperplane, where n=dim V. If and only if 

o is in SO(V), the number of symmetries representing o will be even. 

Remark. If L is field, each e© O(V) can be written as a product 
of <n symmetries with respect to a hyperplane (cf. Dieudonné [3]). 
We have not been able to prove this for a general local ring. As a 
consequence of Theorem 2 we have that the homomorphism 4,, 
(2), is a map onto. 
A first characterization of the congruence commutator groups is 

given by the 

THEOREM 3. Q(V, J) is being generated by the elements (rr’)*, where 
Tt and tr’ are symmetries with respect to hyperplanes and h;(rr’) =1. 

Among the consequences we have Q(V) contains the square of each 

element of SO(V). SO(V)/Q(V) is commutative and each element 
has order <2. The centralizer of Q(V) is equal to the centralizer of 
SO(V) in O(V) and consists of the elements 1 and —1. center SO(V) 
=S0(V)\center O(V). center Q(V) = Q(V)(\center O(V). 

3. The Clifford algebra and the spinor norm. A second character- 
ization of the congruence commutator group. The Clifford algebra 
over V, C(V), is defined in the usual way, cf. Bourbaki [2]. Denote 
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by C+(V) the subalgebra of C(V) generated by the products of an 

even number of vectors. In the multiplicative group of C+(V) we 
have the special Clifford group, D(V), consisting of the products of 
an even number of nonisotropic vectors, considered as elements of 

C(V). D(V)/L* is canonically isomorphic to SO(V). 
On D(V) we have a canonical homomorphism N into the multipli- 

cative group L* (Bourbaki [2] calls this homomorphism spinor 
norm) which is quadratic in L*. Since SO(V) is isomorphic to 
D(V)/L*, N determines a homomorphism 

(3) 6: SO(V) — L*/L* 

which we call spinor norm. 
For e©SO(V), 0(c) is determined as follows: According to Theorem 

3, @ can be represented as the product of an even number of sym- 
metries 7; with respect to nonisotropic hyperplanes H;. For each 4, 
choose a nonisotropic vector Then = []®(A;, A)L**. 

kernel (@) is called reduced orthogonal group over V, O’(V). Obviously 

Q(V)CO’(V). 
If ind V21, then O’(V) = Q(V) and the spinor norm @, (3), plays 

for the orthogonal groups the same role which the determinant plays 
for the linear groups. In particular, the spinor norm yields a second 

characterization of the congruence commutator groups: 

THEOREM 4. Assume ind V21. Let J be an ideal of L with JCI. 
Denote by 0; the homomorphism 

hy: © SO(V) — (O(c), hz) € L*/L®™ X SO(g,V), 

(i) kernel(@: SO(V)—>L*/L*?) = Q(V) 
kernel(0;: SO(V)->L*/L** XSO(g,V)) = Q(V, J), 

(ii) SO(V)/Q(V) is isomorphic to image(@) = L*/L**, and 
SO(V, J)/Q(V, J) is isomorphic to image(6;|SO(V, J)) =the sub- 
group of L*/L**Xcenter SO(g;V) consisting of the pairs (4, ¢) with 
gsi 

(iii) (SO(V, Q(V))/Q(V, J) is isomorphic to center Q(g7V). 

(i) kernel(hy: Q(V)—Q(g;V)) = Q(V, J), 
(ii) If dim V odd, 1.e., if center SO(g;V) =1, then SO(V, J)/Q(V, J) 

is isomorphic to 
(iii) If dim V odd, then center Q(g;V)=1 and therefore: SO(V, J) 

MaQ(V)= J). 

4. The projective linear groups in 2 variables over a local ring. Let 

L be a local ring with greatest ideal J+ LZ. Assume char(L/I) #2 and 
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L/I#F,. In [5] we have defined the general and the special linear 
group in 2 variables over L, denoted by GL(2, L) and SL(2, L), respec- 
tively. 

For each ideal J of L we have the canonical homomorphism 

(4) hy: GL(2, L) + GL(2, L/J). 

Here, GL(2, L/L) denotes the unit group. Using the map hy, (4), and 
the determinant, we have, for each ideal J of L, the following two 

invariant subgroups, cf. [5]: 

GC(2, L, J) = group of the ¢ € GL(2, L) with hyo € center GL(2, L/J), 

SC(2, L, J) = group of the ¢ € GL(2, L) with hyo = 1 and det o = 1. 

Note. GC(2, L, L) =GL(2, L); SC(2, L, L) = SL(2, L). 

Consider the canonical homomorphism 

(5) P: GL(2, L) + GL(2, L)/center GL(2, L). 

The image PGL(2, L) of GL(2, L) under the map (5) is called projec- 
tive linear group in 2 variables over L. 

The homomorphism hy, (4), induces a homomorphism of PGL(2, L) 
into PGL(2, L/J) which we again denote by h;. The determinant 
induces a map: PGL(2, L)—>L*/L** which we again denote by det. 
Then the images PGC(2, L, J) and PSC(2, L, J) of the groups 
GC(2, L, J) and SC(2, L, J), respectively, under the map P, (5), can 

be characterized as follows: 

PGC(2, L, J) 

= group of the ¢ © PGL(2, L) with hyo = 1 © PGL(2, L/J), 

PSC(2, L, J) 

= group of the ¢ © PGL(2, L) with hyo = 1 anddeto = L*. 

In [5] we have determined the structure of the group GL(2, L). To- 
gether with the preceding remarks, this yields the following 

STRUCTURE THEOREM FOR PGL(2, L). 
(i) Each subgroup G of PGL(2, L) which is invariant under PSL(2, L) 

determines an ideal J of L such that 

(*) PSC(2, L, J) C G C PGC(2, L, J) 

and, conversely, each subgroup G of PGL(2, L) satisfying (*) is in- 
variant in PGL(2, L). 

(ii) In PSL(2, L) all the invariant subgroups are of the form 

PSC(2, L, J), where J runs through the ideals of L. 
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5. The isomorphisms of certain orthogonal groups over V with 
projective linear groups in 2 variables, for dim V=3 and 4. The 
properties of the Clifford algebra C(V) over V yield in a natural 
way an isomorphism of certain orthogonal groups over 3- and 4- 

dimensional spaces into projective linear groups in 2 variables. These 
isomorphisms are of fundamental importance for the determination 

of the structure of orthogonal groups of spaces with arbitrary dimen- 
sion, cf. §6. 

THEOREM 5. 
(i) Assume dim V=3 and ind V=1 and L/I#F;. Then SO(V) is 

isomorphic to PGL(2, L). Under this isomorphism, the group SO(V, J) 

goes into PGC(2, L, J) and the group Q(V, J) goes into PSC(2, L, J). 
In particular, Q(V) goes into PSL(2, L). 

(ii) Assume dim V=4 and ind V=ind g;V=1. Then PSO(V) 
=SO(V)/center SO(V) is isomorphic to a subgroup PU(2, L’) of 
PGL(2, L’), where L’ = L(A") is a local ring, obtained from L by a 

quadratic extension with an element AC0(—1). Under this isomorphism, 
the group PQ(V, J), isomorphic to Q(V, J), goes into PSC(2, L’, J’), 
J'=JL'. In particular, PQ(V), isomorphic to Q(V), goes into PSL(2, 
L’). 

6. The structure of the groups SO( V) and Q( V) for ind V21. Let 

G be a subgroup of SO(V). The order of G, o(G), is the smallest ideal 
J with SO(V, J)DG, i.e., the smallest ideal J with 4;G Ccenter 

SO(g, V). 

Assume ind V21. From Theorem 3 we see that Q(V, J) has order 

J. From Theorem 4 (ii) we have that SO(V, J)/Q(V, J) is commuta- 
tive, and since SO(V, J) and Q(V, J) are invariant, we have: Each 

subgroup G of SO(V) satisfying Q(V, J) CG CSO(V, J) is invariant 
and of order J. The following theorem asserts that these are the only 
invariant subgroups (and even the only subgroups invariant under 
Q(V)) of SO(V) of order J: 

THEOREM 6. Let V be a space over a local ring L, char L/I #2. As- 
sume ind V21, dim V23. Jf dim V=3, assume L/I¥F;. If dim V 

=4, assume ind grV =1. 
(i) Each subgroup G of SO(V) of order o(G)=J which is invariant 

under Q(V) satisfies the conditions 

(*) aQ(Vv, J) CEC J). 

Conversely, every subgroup G of SO(V) satisfying (*) is invariant in 

SO(V) and of order J. 
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(ii) Each invariant subgroup G of Q(V) of order o(G)=J is of the 
form G=Q(V, J) or SO(V, Q(V). (SO(V, NMAQ(V))/Q(V, J) 
is isomorphic to center Q(g;V). 

REMARK. The proof of the preceding results is based upon an 

elaboration of the methods which have been developed, for an essen- 
tial part by Dieudonné, for the investigation of the orthogonal groups 
over a field, cf. also Artin [1]. 

In particular, Theorem 6 is proved by relating the structure of 
the group SO(V) with the structure of the groups mentioned in 
Theorem 5, and the structure of these latter groups is known, as we 

have stated in §4, due to the results of our earlier paper [5]. 
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TOPOLOGICAL DYNAMICS ON NILMANIFOLDS 

L. AUSLANDER,! F. HAHN AND L. MARKUS? 

Communicated by W. S. Massey, January 18, 1961 

There has always been a lack of examples of compact manifolds 
which are minimal sets under the action of the real line, minimal 

meaning that each orbit is dense in the manifold. All tori admit such 
an action and G. A. Hedlund [4] has given examples of 3-manifolds 

having such an action. 
The action of a group T on a metric space X is said to be distal if 

for any two distinct points x, yCX the distance between tx and ty 

bounded away from zero for t€T. In the works of R. Ellis [1] and 
W. H. Gottschalk [2] the question of whether a distal minimal set is 
equicontinuous has arisen. Indeed, R. Ellis has shown that if X is 

locally compact and zero dimensional and if T acts on X so the action 
is distal and minimal then the action is equicontinuous. 

The authors have shown that every compact nilmanifold M admits 
a flow under which M is minimal. This action is even real analytic. 
Thus there is no scarcity of manifolds which are minimal under a 

flow. We have also shown that these actions are distal. If these actions 
were equicontinuous it would follow that M would be a torus [3]. 
Since there are nilmanifolds which are not tori, we have shown the 

existence of analytic flows on compact manifolds which are distal, 
minimal, but not equicontinuous. 

Our basic approach is as follows: 

LemmMA. If W is an open subset of a connected, simply connected, 
nilpotent Lie group N with discrete uniform subgroup D, then the set 
swept out by the one parameter subgroups containing some element of W 

contains a fundamental domain for N/D. 

THEOREM. If D is a discrete uniform subgroup of a connected, simply 
connected, nilpotent Lie group N then the set of points of N, which lie 
on one parameter subgroups whose projection on N/D is dense, is a set 

of category II. 

By a relatively straightforward calculation we can show that the 
action of any one parameter subgroup on N/D is distal. From Ellis 

1 Research supported by N. S. F. Grant 15565 and O. O. R. contract SAR-DA- 

19-020 ORD-5254. 
* Research supported by N.S. F. Grant 11287. 
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[1] we can conclude that the action of each one parameter subgroup 
is pointwise almost periodic. The theorem then shows that there exist 

one parameter subgroups such that N/D is an orbit closure. Since 
the action is pointwise almost periodic it follows that N/D is mini- 
mal [3]. 

Complete proofs of these results will be published elsewhere. 
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REPORT: AN EXAMINATION OF A DECISION 
PROCEDURE 

BY F. C. OGLESBY 

Communicated by Everett Pitcher, February 5, 1961 

1. Introduction. R. Stanley in [5] presents a proof procedure for 
the universal validity (validity in all nonempty domains) of formulas 
of the first order predicate calculus which is relatively easy to apply. 
He shows that his procedure is a decision procedure for the monadic 

predicate calculus. Further, he states that the limits of the procedure, 
short of being a general method of decision, are not known, but that 

every universally valid formula which he has tested has been shown 
by his procedure to be valid. 

W. Ackermann, in his review of Stanley's paper [1], gives an exam- 

ple of a universally valid formula of degree higher than two (see §3 
below) for which Stanley’s procedure gives no decision and also sug- 
gests a way to enlarge the realm of application of the procedure; 
namely, to start not with a given formula A, but with a finite dis- 
junction AV/ --- VA. 

The purpose of this note is to report on an examination of Stanley’s 
procedure to determine for certain decidable classes of formulas 
whether or not the procedure gives a method of decision. We shall use 
SP to denote Stanley’s procedure. 

Throughout this note, the familiar propositional connectives 
are denoted by ‘A’ (and), ‘VV’ (or), and ‘-\’ (not). Individual vari- 
ables are denoted by x, x1, %2,---, Yo, and predicate 
variables by Fi, Fj, - - - , Fi, Fi, ---,G;, ---, Hi, Hi, ---, the 

superscript indicating the monadic or dyadic character of the vari- 
able. We shall feel free to omit subscripts and superscripts whenever 

no ambiguity will arise. Universal quantifiers are denoted by (Wx), 
(Wx1),---, (Wy), (Wn), - - -. We assume throughout that existen- 

tial quantifiers and signs of material implication or equivalence have 
been replaced by their respective usual equivalents. A, A1,---, B, 

B,,---+ denote arbitrary formulas; A(x),---, B(x),--- denote 
arbitrary formulas with free x; etc. 

The general method of SP is to derive a contradiction from the 
negation of the given formula. In particular, a preliminary step of 
exportation (as characterized in W. Quine [6]) is applied to the uni- 
versal closure of the given formula, followed by a preliminary step of 

prefixing a ‘—’. The remainder of the procedure, which we will de- 
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note by SP*, involves cycles of prescribed steps including instantia- 
tions of quantifications according to natural deduction techniques 
and applications of propositional rules. Contradictory disjuncts are 
dropped as they are uncovered and, if at some step everything van- 

ishes, then the original formula is established as universally valid, or, 
equivalently, the formula resulting from the preliminary steps is es- 
tablished as nonsatisfiable (satisfiable in no nonempty domain). In 
this case, we say that SP yields a contradiction. 

2. We say that a formula A is a member of the AE predicate 
calculus if the formula resulting from A by applying the preliminary 
steps of SP contains no negative quantifier within the scope of a 
positive quantifier. (Positive and negative quantifiers are defined as 
with J. Herbrand [2]; when converted to prenex normal form, posi- 
tive quantifiers appear in the prefix as universal quantifiers and nega- 
tive as existential.) Note that by this definition the monadic predi- 

cate calculus is contained in the AE predicate calculus. Thus, the 
following theorem is an extension of Stanley’s result that the pro- 
cedure gives a method of decision for the monadic predicate calculus. 

THEOREM 1. SP gives a method of decision for the AE predicate cal- 

culus. 

Proor. Let A be an arbitrary universally valid formula of the 
AE predicate calculus. Then A*, the result of applying the prelimi- 

nary steps of SP to A, is nonsatisfiable and has an equivalent prenex 
normal form: 

a= 0. 

Hence, as is well-known, A* is not satisfiable in any domain contain- 

ing ” individuals if »>0, and A* is not satisfiable in any domain con- 
taining one individual if »=0. Thus, upon applying to A* the pro- 

cedure in Hilbert and Ackermann [3] for determining satisfiability 
in finite domains, a truth-functional contradiction is obtained. It 

follows easily from this that SP* applied to A* yields a contradiction. 

3. A formula is of second degree if at least one quantifier appears 
within the scope of another quantifier, but no quantifier appears 

within the scope of more than one other quantifier. K. J. Hintikka 
in [4] extends the notion of distributive normal form in the proposi- 
tional calculus to the full predicate calculus. In particular, he defines 

closed second degree distributive normal forms. These latter normal 
forms are finite disjunctions of formulas called closed second degree 
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constituents of zero order. Following Hintikka, we denote an arbi- 
trary closed second degree constituent of zero order by C°2. Hintikka 
presents a set of three conditions with the property that an arbitrary 
C°2 is nonsatisfiable if and only if at least one of the conditions holds 
for C°2. However, a proof of the necessity of these conditions is 
omitted in his monograph. We obtain a proof of the necessity of these 
conditions by showing that if none of the conditions holds for an 
arbitrary C°2, then C°2 is satisfiable in a denumerably infinite domain. 

4. THEOREM 2. SP* gives a method of decision for nonsatisfiability 
in the class of all closed second degree distributive normal forms. 

Proor. The theorem follows by showing that SP* yields a con- 
tradiction when applied to an arbitrary C°2 satisfying at least one of 
the above three conditions. It should be mentioned that there are 
certain special cases for which the set of necessary and sufficient con- 
ditions does not apply, but that these cases are easily handled. 

5. We say that a formula A of the predicate calculus is a member 

of the class ® if the formula A* which results from applying the pre- 
liminary steps of SP to A is (closed and) of second degree. Note that 
if A* is of first degree (no quantifier appears within the scope of 
another quantifier), then A is a member of the AE predicate calculus 

and Theorem 1 applies. 
Since any arbitrary closed second degree formula A* can be effec- 

tively transformed into an equivalent closed second degree distribu- 
tive normal form, the conditions of §3 and Theorem 2 each give a 
method of decision for determining universal validity in the class ®. 
However, it is not, in general, practical to attempt the transforma- 
tion, and hence it is of interest to determine whether SP necessarily 
yields a contradiction when applied directly to an arbitrary univer- 
sally valid formula of ®. The following theorem gives a negative 
answer to this question. 

THEOREM 3. SP is not a decision procedure for determining universal 
validity of arbitrary formulas of ®. 

Proor. Let A(x) denote 

[Fx A - (wy) (Gey A V [Fx A (wy) (xy A Fy)). 

Consider B,= — (Wx)A(x). The universal validity of B; is easily de- 
termined by a direct valuation. However, it can be shown that SP 

applied to B; does not yield a contradiction. 
REMARK. We note that it can be shown that SP does yield a 

contradiction when applied to the formula 
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a(wx){ Fx A (wy) (Gry A Fy) V (wy) (ay A Fy))}, 

which is equivalent to B,;. However, a simple application of the dis- 
tributive law does not, in general, remedy the situation; for the fol- 
lowing formula, B, is universally valid but does not yield a contra- 

diction under application of SP: 

(Fey A Fyy) A Fex] V (ey) (Fyx A Fyy) 

A (Wy) A - Fyy) V (Fyx A Fyy)) A - 

6. Ackermann’s suggestion to start not with a given formula A, 
but rather with a finite disjunction A\/ --- \VA does strengthen 
SP for the class ®, for it can be shown that SP applied to B,\/ By 

yields a contradiction. Moreover, it can be shown that although SP 

applied to B,\/B, does not yield a contradiction, SP applied to 
B.\/ Bz\/ Bz does yield a contradiction (these results also establishing 

the universal validity of B; and B). 
It is clear, however, that the suggestion cannot give us a method of 

decision for the class ® unless we can give some sort of a rule for deter- 
mining the number of disjuncts to be used. For convenience, let us 
denote SP modified by starting with g disjuncts of the given formula 
by SP,. 

THEOREM 4. No positive integer M exists such that SP y is a decision 
procedure for determining universal validity of arbitrary formulas of ®. 

Proor. Let m be an arbitrary positive integer. Consider the form- 
ula 

Bu = (Wx) Arla) A Aaa) A A (2) An(2), 
where 

Ax(x) = [Fix A - A Fiy)] 

V [Fix A (wy) 73 Fiy)], 15k Sm. 

The universal validity of B4, is easily established by a direct valua- 

tion. However, it can be shown that, if gsm, then SP, applied to 
B’,, does not yield a contradiction, whereas SP,.4: applied to BY, does 
yield a contradiction (also establishing the universal validity of B4,). 

REMARK. Theorem 4 does not exclude the possibility of being able 

to give, for the class ®, an effective rule which, when applied to a 
given individual formula A of ®, will produce an integer N (depend- 
ing upon A) such that: if A is universally valid, then SPy applied to 

A yields a contradiction. 



F. C, OGLESBY 

REFERENCES 

1. W. Ackermann, A review of [5], J. Symb. Logic vol. 21 (1956) p. 197. 

2. J. Herbrand, Recherches sur la théorie de la démonstration, Trav. Soc. Sci. Lett. 

Varsovie, Classe III, no. 33, 1930. 

3. D. Hilbert and W. Ackermann, Principles of mathematical logic, New York, 

Chelsea Publishing Company, 1950. 
4. K. J. Hintikka, Distributive normal forms in the calculus of predicates, Acta 

Philosophica Fennica vol. 6 (1953) 71 pp. 

5. R. Stanley, An extended procedure in quantificational logic, J. Symb. Logic vol. 18 
(1953) pp. 97-104. 

6. W. V. Quine, On the logic of quantification, J. Symb. Logic vol. 10 (1945) pp. 

1-12. 

UNIVERSITY 



ON THE SEMIGROUP OF IDEAL CLASSES IN AN ORDER 
OF AN ALGEBRAIC NUMBER FIELD 

BY E. C. DADE, O. TAUSSKY AND H. ZASSENHAUS 

Communicated by N. Jacobson, December 30, 1960 

There is a natural link between classes of ideals in orders of alge- 
braic number fields and similarity classes of integral matrices defined 
by unimodular matrices. 
Two fractional ideals in an order of an algebraic number field are 

called arithmetically equivalent if and only if they differ by a factor in 
the field. It is known that the number of classes obtained in this way 
is finite and that the classes form a finite abelian semigroup. In order 
to study and generalize these ideal classes orders in finite extensions of 
more general fields are considered. 

In order to describe the results obtained several abstract concepts 
concerning semigroups are introduced: 

An element a of a multiplicative semigroup S is called invertible if 
the equations 

ax = ya = @, ca ae=a 

hold for some elements x, y, e of S. 

It follows then that e is uniquely determined, as a function of a, 

that it is an idempotent and that a has a unique inverse with respect 
to e, namely ex. All invertible elements with the same identity e form 
a multiplicative group G(e). A semigroup is called pure if every in- 
vertible element is an idempotent. 
Two elements a, } of S are called weakly equivalent if the equations 

ax = b, by =a 

can be solved in S. 
Consequently weak equivalence classes can be introduced. Every 

idempotent weak equivalence class contains exactly one idempotent. 
These concepts are now applied to the abelian semigroup of classes 

of ideals in an algebraic extension E of a field F. Such an ideal is de- 
fined as an 0g-module, formed of elements in E, where 07 is a De- 

dekind ring in F with F as quotient field. The ideals are assumed 
finitely generated over or and to contain a basis of E over F. 

This set of ideals a is closed with respect to multiplication, addi- 
tion, intersection, quotient a: b (i.e. the set of elements x in E satisfy- 
ing xbCa) and the adjoint operation a? (the set of elements x of E 

satisfying the condition that 
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tr xy € Or 

for all y of a). For every ideal a we denote the order a: a by 0a. 
In the special case where F is the rational number field and or the 

ring of rational integers the idea! classes form a finite commutative 
semigroup under arithmetical equivalence. 

To study these ideals the following lemma of Krull is used: 
Let a, 6 be two ideals which satisfy the relations 

ab = b, aa Ca. 

Then a is an order, i.e., an ideal which contains a unit element and is 

closed under multiplication. 

The lemma implies that every idempotent ideal is an order. It fur- 
ther implies that two ideals a, b are weakly equivalent if and only if 

1 € (b:a)(a:b). 

If F is a finite extension of the rational field and or the ring of 

algebraic integers then a power of every ideal of E is an invertible 
ideal. For this same special case we have: 

Every idempotent weak equivalence class is represented by pre- 
cisely one order. Conversely, for a given order 0 of E over or all 
o-ideals a satisfying 

a(o:a) = o 

form a multiplicative group G(o) with o as identity. This group is the 
idempotent weak equivalence class represented by o. 

In the general case we have: All invertible ideals r of E over or with 

the same identity order 0; form a multiplicative abelian group G(o). 

For two orders 0, o’ of E over or satisfying oCo’ and o: 0’ (0) the 
mapping a(0, 0’) given by 

a(0, o’)r = ro’ (r € G(o)) 

is a homomorphism of G(o) onto G(o’). 
Take again the case when F is a finite extension of the rational 

field and op the ring of integers in it. It is concluded that every ideal 
a in E over op is weakly equivalent to an ideal 6 such that b is an 

order 0;, for some integer p and such that 

6b C oi, 

bo; = 0}. 

For the proof the fact that some power of a is invertible is used. This 
follows by finiteness considerations. 

— 
— 
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It is shown next that for the general case the following fact holds:' 
Let E/F =n and let a? be the least positive invertible power of the ideal a 
in E, then 

psn-—i. 

Further n—1 is best possible. 
For the proof of this the following general lemma is proved: 
Let H be a commutative hypercomplex system with unit element of 

dimension n over the field F. If for a linear subspace M of H there is a 
positive integer r such that 

M'=8 

then also 

M=' = d. 

The following generalization can also be proved: if H has a faithful 
representation by u Xp matrices then 

= H. 

Finally, a “reduction” theorem is proved. First, observe that in any 

commutative ring R with unit element and a subring 0 containing the 
unit element the o-modules contained in R form a system J*(R/o) 

that is closed under addition, multiplication, intersection and quo- 

tient forming. 
Furthermore let us introduce the relation of weak equivalence be- 

tween two o-modules a, b contained in R: 

“a is weakly equivalent to b” if and only if 

a(b:a) = b, b(a:b) = a. 

This relation is reflexive, symmetric, transitive and multiplicative so 
that the weak equivalence classes form an abelian semigroup 
W*(R/o). Among these the classes containing a representative a 

satisfying 

0c — 0, at = Oat 

for some exponent g, form a subsemigroup U*(R/o). 

1 This was conjectured on the basis of an example of an order in the cubic field 
generated by a*+2a?+2a+1=0, computed on the IBM 709 at the Western Data 

Processing Center by E. C. Dade and H. Zassenhaus. (An account of this computation 

which was sponsored in part by ONR will be published separately.) In the case of an 

order in a quadratic extension of the rational number field every ideal class has an in- 

verse, for the semigroup of ideal classes is in this case a union of groups. This had al- 

ready been discovered by Gauss in terms of quadratic forms. 

= 
— 



308 E. C. DADE, O. TAUSSKY AND H. ZASSENHAUS 

THEOREM. Let F be a finite extension of the rational field. Let or be 
the subring of the algebraic integers of F. Let E be an extension of F of 
finite degree n. Let 0, 0’ be two orders of E over or satisfying 0’ Co. Let 

{ = o’:0. 

The weak equivalence classes of ideals a of E over or satisfying 

(1) de > 0’, (2) 

formanabelian semigroup W(o, 0’ /0r) that isisomorphic toU*(0/f)/(0'/f). 

CALIFORNIA INSTITUTE OF TECHNOLOGY AND 

UNIVERSITY OF NotrE DAME 



AREA OF DISCONTINUOUS SURFACES 

BY CASPER GOFFMAN!' 

Communicated by J. W. T. Youngs, January 19, 1961 

1. A general theory of surface area, [1; 2], exists for the non- 
parametric case. Thus, area is defined for all measurable f on the unit 

square Q=I XJ. The area functional is lower semi-continuous with 
respect to almost everywhere convergence and agrees with the 
Lebesgue area for continuous f. On the other hand, for continuous 
parametric mappings T of the closed unit square Q into euclidean 
3-space E;, Lebesgue area is not lower semi-continuous with respect 

to almost everywhere convergence nor even, as C. J. Neugebauer has 
shown, [3], with respect to pointwise convergence. 

It thus appears that a theory of parametric surface area must be 
restricted to surfaces which cannot deviate too far from the ones given 
by continuous mappings. In this paper, we develop the beginnings of 
a theory for a class of surfaces which we call linearly continuous. 

2. Let f be a real function defined on Q and, for every u, let f, be 
defined by f.(v)=f(u, v) and let f, be defined similarly. Then f is 
linearly continuous if f, is continuous for almost all u and f, is con- 
tinuous for almost all ». A mapping T:x=x(u, v), y=y(u, 2), 
z=2(u, v) of Q into £; is linearly continuous if x, y, z are linearly con- 

tinuous. 
A sequence { fa} of functions converges linearly to a function f if 

(fn)u converges uniformly to f, for almost all u, and (f,), converges 
uniformly to f, for almost all v. A sequence T,: x =x,(u, v), y=Ya(u, 2), 

z=2,(u, v) converges linearly to a mapping T: x=x(u, v), y=y(u, 2), 
z=2(u,v) if {xa}, {yn}, {za} converge linearly to x, y, z, respectively. 

Let P be the set of quasi linear mappings from Q into E;. For 

let 

d(p, q) = inf[&: there are sets A, C J, Be C J, 

m(A,) > 1 — k, m(B,) > 1 — k, and | p(u, v) — g(u, ») | <k 

on (A, X J)U (I X B,)). 

It is easy to verify that P is a metric space and that { Pa} converges 
to p in this space if and only if it converges linearly. Let E be the 

elementary area functional on P. It is not hard to prove 

1 Research supported by National Science Foundation Grant No. NSF G-5867. 
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THEOREM 1. E is lower semi-continuous on P. In other words, if 
{Pa} converges linearly to p then lim inf E(p,) 2 E(p). 

By the Fréchet extension theorem, E is extended to a lower semi- 

continuous functional ® on the completion £ of P. 

THEOREM 2. The completion £& of P is the space of linearly continuous 
mappings with the metric corresponding (as above) to linear conver- 

gence. 

3. It is obvious that for every continuous mapping T, A(T) 2®(T) 
where A(T) is the Lebesgue area. The inverse inequality holds so that 
the functional ® constitutes a legitimate extension of Lebesgue area 
to substantially wider class of mappings than the continuous ones. We 
outline the proof. 

For a continuous T:x=x(u, v), y=y(u, v), z=2(u, v), the lower 

area V(T) is defined as follows: 

Let Ti: y=y(u, v), z=2(u, v), T2:x=x(u, v), z=2(u, v), and 

T3: x=x(u, v), y=y(u, v) be the associated flat mappings. For every 

simple polygonal region P in Q°, let 

= f | T:P*)|, 

where the integration is over the yz plane, and O(£, T:P*) is the topo- 
logical index of 7,;P* at — (A° and A* are the interior and boundary, 

respectively, of a set A). Define v.(P) and 2,(P), similarly, and let 

o(P) = + v2(P)? + 

Let r=(P1,---, Pn) be a finite set of pair-wise disjoint simple 
polygonal regions in Q° and 

v(x) = > v(P,). « 

Finally, let 

V(T) = sup[v(x): x]. 

Cesari has shown (e.g. [4]) that A(T) = V(T) for every continuous 

The distance between 2 sets A and B is defined by 

d(A, B) = sup[d(x, B): x € A] + sup[d(y, A): y € B}. 

With this metric, the set a of simple polygonal regions is a separable 
metric space. Let BCa be dense in @ and 
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Ve = sup[»(x): x C 

Lemma 1. V,(T)=V(T). 

Now, let {7,} be a sequence of continuous mappings which con- 
verges linearly to a continuous mapping T. Let y be the set of simple 
polygonal regions whose boundaries consist of line segments parallel 
to the coordinate axes for which T and 7,,“=1, 2, --- are continu- 
ous and on each of which {7,} converges uniformly to T. For each 
xCy, lim inf v(7, T,) 2v(r, T). Since y is dense in a, it follows that 

lim inf V(T,) 2 V(T). This proves 

THEOREM 3. A(T) is lower semi-continuous with respect to linear con- 

vergence on the set of continuous mappings. 

Coro.iary 1. A(T) =®(T) for every continuous T. 

Proor. For every sequence {,} of quasi-linear mappings con- 

verging linearly to 7, lim inf E(P,) 2A(T). Choose {pa} so that 

lim E(p,) =®(T). Then A(T) S®(7), 

4. A set S will be called negligible if SCZ:Z. where Z; and Z; 
have linear measure zero. Kolmogoroff's principle holds in the follow- 
ing form. 

THEOREM 4. If T; and T> are linearly continuous mappings from 
Q into E; and tf for every pair of points &, n not belonging to a negligible 
Set 

|TE—Tm| | T— Tm, 
then ©(7;) $®(T;). 

5. A real function f on Q is BVC if for almost all u and almost all 
v, f, and f, are equivalent to functions of bounded variation and the 
corresponding variation functions are summable. f is ACE if for al- 
most all « and almost all v, f, and f, are equivalent to absolutely con- 
tinuous functions. 

For functions which are BVT and ACT it is a simple known fact 

that the integral means commute with the partial derivatives. This 
also holds almost everywhere for functions which are BVC and ACE. 

Using this fact and the fact, [5], that if f is BVC and linearly con- 
tinuous then the integral means of f converge linearly to f, the proof 

of the following generalization of a theorem of Morrey, [4], may be 
obtained in somewhat standard fashion. The generalization is in two 

directions. Instead of holding only for conjugate Lebesgue spaces, the 

theorem holds for conjugate Kéthe spaces, [6; 7], and the theorem 
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holds for linearly continuous mappings rather than just for continu- 

ous ones. 

THEOREM 5. If the functions x, y, 2 of a linearly continuous T are 
BVC and ACE and if the pairs of partial derivatives (xu, Ye), (Xe, Yu); 

(Xu, Ze), (Xe, Zu), (Vu, Ze), (Ve, Zu) Delong to conjugate Kéthe spaces, the 

area ®(T) is given by the formula 

where J =[J?+J3+J3]"* and Ji, Je, Js are the jacobians of Tz, Ts, 
respectively. 

6. We define an equivalence relation for linearly continuous map- 
pings. T is equivalent to 7’(T ~T") if there are sequences {pa} and 
{qu} of quasi linear mappings such that, for every m, p,~q, in the 
Lebesgue sense and { Pa} converges linearly to T, {qn} converges 
linearly to T’. 

The following simple facts hold: 
(a) The relation “ ~” has the properties of an equivalence relation. 
(b) If T and T’ are continuous and Fréchet equivalent then T~T’. 

(c) If T=T”’ then =®(T’). 

We refer to an equivalence class as a surface and to its elements as 
representations. 

D mappings, the Dirichlet integral, and almost conformal map- 
pings are defined as for the continuous case, [4], with BVT and ACT 

replaced by BVC and ACE. 
We say that a mapping T is simple if there is a negligible set S 

such that [€Q—S, implies T(E) ¥T(n). 
The following holds: 

THEOREM 6. If T’ is a linearly continuous simple mapping and 
@(T") < «, the surface given by T’ has a representation T, with jacobian 

J, such that 

#(7’) = = fo dudv. 

CorRo.uary. Every linearly continuous nonparametric surface of fi- 
nite area has a parametric representation T, with jacobian J, such that 
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ON THE PRIME IDEALS OF SMALLEST NORM IN AN 
IDEAL CLASS mod f OF AN ALGEBRAIC 

NUMBER FIELD 

BY G. J. RIEGER 

Communicated by I. J. Schoenberg, February 3, 1961 

In 1947, Linnik [3] proved the following theorem: 

THEOREM (OF LINNIK). There exists an absolute constant c such 

that in every prime residue class mod k there is a prime number p 
with p <k°. 

A simplified proof of this theorem was given by Rodosskii [7] 
whose proof (similar to Linnik’s) rests basically on (A) function- 

theoretic lemmas, (B) theorems on L-functions, (C) estimates of char- 
acter sums, and (D) a sieve method. The theorems (B) can be classi- 
fied and characterized as follows: 

(B1) order of magnitude of the L-functions [5, Chapter 4, Satz 

5.4], 

(B2) existence of at most one exceptional zero [5, Chapter 4, Satz 
6.9], 

(B3) Siegel’s theorem on the exceptional zero [5, Chapter 4, Satz 
8.1], 

(B4) functional equation of the L-functions [5, Chapter 7, Satz 
1.1], 

(BS) number of zeros in vertical strips [5, Chapter 7, Satz 3.3], 
(B6) explicit formulae [5, Chapter 7, Satz 4.1, Satz 6.1]. 

Recently, I have been able to prove the following generalization of 

Linnik’s theorem which I had conjectured elsewhere [6, p. 168]: 

THEOREM 1. For every algebraic number field K there exists a con- 
stant c(K), depending on K only, such that in every ideal class mod f 
(in the narrowest sense) there is a prime ideal p with Np < Nf*®?. 

The skeleton of the proof of Theorem 1 can be taken from Rodos- 
skii’s proof; the lemmas (A) are the same; the generalized theorems 

(B1) resp. (B3) resp. (B4) resp. (B5) resp. (C) resp. (D) can be found 
in [1] and [4] resp. [4] resp. [1] resp. [1] resp. [2] resp. [6]; the 

remaining theorems (B2) and (B6) can easily be generalized. The 

details of the proof of Theorem 1 are then essentially the same as in 

[7]. This completes the outline of the proof of Theorem 1. 
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To the related question of the “smallest” prime numbers in a residue 
class mod f we hope to come back soon. 
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DOCTORATES CONFERRED IN 1960 

The following are among those who received doctorates in the 
mathematical sciences and related subjects from universities in the 

United States and Canada during 1960. In each case when available, 
the university, the month in which the degree was conferred, minor 
subjects (other than mathematics), and title of dissertation are given. 
309 names are listed. 

R. H. Abraham, University of Michigan, June, Discontinuities in 
general relativity. 

R. D. Adams, University of Minnesota, June, minor in Physics, 

I, density of solutions to parabolic and related equations on space time 
surfaces. 

Sidney Addelman, Iowa State University, November, Fractional 

factorial plans. 
D. E. Amos, Oregon State College, June, minor in Chemical En- 

gineering, Application of the Wiener-Hopf technique to half plane dif- 
fraction of cylindrical waves. 

K. W. Anderson, University of Illinois, June, Midpoint local uni- 

form convexity, and other geometric properties of Banach spaces. 
M. A. Arkowitz, Cornell University, June, The generalized White- 

head product. 
Michael Artin, Harvard University, June, On Enriques’ surfaces. 

H. R. Axelrod, New York University, June, minor in Biology, 

Mathematical basis for solution of medical and dental biostatistical 
problems. 

A. E. Babbitt, Jr., Columbia University, June, Finitely generated 

pathological extensions of difference fields. 
O. P. Bagai, University of British Columbia, May, Multiple com- 

parison methods and certain distributions arising in multivariate sta- 

tistical analysis. 
R. E. Barlow, Stanford University, October, Applications of semi- 

Markov processes to counter and reliability problems. 
B. H. Barnes, Michigan State University, December, Structure of 

automata. 

L. E. Batson, University of Texas, January, minor in Physics, On 

inversion of the Laplace transformation by means of a step-function. 
Sister Marion Beiter, Catholic University of America, February, 

minor in Physics, Coefficients in the cyclotomic polynomial for a number 
with at most three distinct odd primes in its factorization. 

Geneva Grosz Belford, University of Illinois, June, minor in 

Physics, Computer logic programs. 

316 
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E. R. Berkson, University of Chicago, August, I. Generalized diag- 
onable operators. 11. Some metrics on the subspaces of a Banach space. 

S. A. Bessler, Stanford University, June, Theory and applications 

of the sequential design of experiments, k-actions and infinitely many 
experiments. 

Andrzej Bialynicki-Birula, University of California, Berkeley, 
June, On automorphisms and derivations of simple rings with minimum 
condition. 

R. J. Bickel, University of Pittsburgh, May, An investigation of 
properties of a scale of Abel type summability methods. 

L. N. Bidwell, University of Pennsylvania, June, Regionally almost 
periodic transformation groups. 

J. H. Billings, University of Maryland, June, Extensions of the 
Laplace cascade method. 

R. G. Bilyeu, University of Kansas, October, minor in Physics, 

Perturbation of an autonomous differential equation with a parameter. 
J. J. Birch, University of California, Berkeley, September, Ap- 

proximations for the entropy for functions of Markov chains. 
F. T. Birtel, University of Notre Dame, August, Banach algebras of 

multipliers. 
G. R. Blakely, University of Maryland, June, Partitions and power 

series. 
T. K. Boehme, California Institute of Technology, June, Opera- 

tional calculus and the finite part of divergent integrals. 
R. A. Bonic, Yale University, June, The involution in group alge- 

bras. 
J. R. Borsting, University of Oregon, June, Limit theorems for cen- 

sored data. 
J. J. Bowers, Carnegie Institute of Technology, June, On symmetric 

means and their applications. 
R. S. Brand, Brown University, June, The collapse of a spherical 

cavity in a compressible liquid. 
Mildred Jeannette Brannon, University of Illinois, February, 

minor in Musicology, Rotations in locally bounded linear metric spaces 
which are not locally convex. 

J. D. Brooks, University of Southern California, June, minor in 
Physics, Second order dissipative systems. 

R. R. Brown, University of California, Los Angeles, August, Solu- 

tion of boundary value problems using non-uniform grids. 
Judith Brostoff Bruckner, University of California, Los Angeles, 

June, Triangulations of bounded distortion in the classification theory of 
Riemann surfaces. 
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R. E. Bryan, Yale University, June, Geodesic winding on Rieman- 
nian planes. 

J. D. Buckholtz, University of Texas, August, Concerning poly- 
nomial sequences and the distribution of their zeros. 

Eugene Butkov, McGill University, May, Spin-orbit potentials of 
nucleons. 

B. R. Buzby, Indiana University, June, Integral equivalence of 
quadratic forms over local fields with | 2| ~ 

Mary Katherine Huggin Cabell, University of Virginia, June, 
Mappings with a multiplicity function. 

T. W. Cairns, Oklahoma State University, May, A generalized 

derivative. 
W. V. Caldwell, University of Michigan, February, Vector spaces 

of light interior orientation-preserving C’ functions. 
D. G. Cantor, University of California, Los Angeles, August, On 

sets of algebraic integers whose remaining conjugates lie in the unit cir- 
cle. 

F. W. Carroll, Purdue University, January, On some classes of non- 
continuable analytic functions; difference properties for some classes of 
functions on locally compact groups. 

G. D. Chakerian, University of California, Berkeley, September, 
Integral geometry in the Minkowski plane. 

S. U. Chase, University of Chicago, March, Homological properties 
of certain rings and modules. 

S. D. Chatterji, Michigan State University, June, Martingales of 
Banach-valued random variables. 

C. H. Chicks, University of Oregon, June, Periodic automorphisms 
on Banach algebras. 

I. F. Christensen, Catholic University of America, June, minor in 

Philosophy and Psychology, Some extensions of a theorem of Marcin- 
kiewicz. 

F. L. Cleaver, Tulane University, August, On coverings of four- 
space by spheres. 

R. F. Cogburn, University of California, Berkeley, January, 
Asymptotic properties of stationary sequences. 

S. H. Coleman, University of Virginia, June, Integration in infinite 
product spaces. 

F. B. Correia, University of Colorado, June, minor in Physics, A 
theory of primes. 

C. G. Costley, University of Illinois, June, Singular nonlinear inte- 
gral equation with complex valued kernels of type N. 

R. C. Courter, University of Wisconsin, January, Maximal com- 
mutative algebras of linear transformations. 
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G. A. Craft, Ohio State University, August, A transformation 
theory for multiplicity functions. 

R. J. Crittenden, Massachusetts Institute of Technology, Febru- 

ary, Conjugate and minimum points on Riemannian manifolds. 
G. J. Culler, University of California, Los Angeles, January, Polar 

decomposition and boundary value problems for matrix differential 
equations. 

G. L. Curme, University of Illinois, February, minor in Economics, 
Perron summability as related to Denjoy type quasi analytic functions. 

T. B. Curtz, Yale University, June, A class of third order ordinary 
differential equations. 

E. C. Dade, Princeton University, June, Multiplicity and monoidal 
transformations. 

R. B. Darst, Louisiana State University, August, On measures and 
measurability. 

H. T. David, University of Chicago, March, The sample mean 

among the order statistics. 

L. C. Dean, Jr., lowa State University, June, minor in Physics, 
Nonlinear hyperbolic partial differential equation with small parameter. 

E. I. Deaton, University of Texas, August, Solutions of a system 
of two nonlinear partial differential equations of the first order, with 
accessory boundary conditions. 

Philippe Dennery, Columbia University, On conservation of prob- 
ability in the Lee model. 

Betty Charles Detwiler, University of Kentucky, August, A varia- 

tional method for functions convex in the direction of the imaginary axis 
and related functions. 

R. S. DeZur, University of Oregon, June, Homomorphisms on 
multiplicative semi-groups of continuous functions on a compact space. 

R. N. D’heedene, Harvard University, March, minor in Elec- 
tronics, Limit sets for nth order ordinary differential equations. 

M. R. Dorff, lowa State University, June, Large and small sample 

properties of estimators for a linear functional relation. 

A. C. Downing, Jr., University of Michigan, June, On the converg- 
ence of steady state multiregion diffusion calculations. 

R. D. Driver, University of Minnesota, August, minor in Electri- 
cal Engineering, Delay-differential equations and an application to a 
two-body problem of classical electrodynamics. 

S. D. Dubey, Michigan State University, June, Contributions to 
statistical theory of life testing and reliability. 

J. R. Duffett, Virginia Polytechnic Institute, June, System relia- 

bilities from component reliabilities. 
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Marguerite Elizabeth Dunton, University of Colorado, June, 
Some contributions to the theory of diophantine equations. 

D. E. Dupree, Auburn University, August, Existence and unique- 
ness of interpolating rational functions. 

A. L. Duquette, University of Colorado, August, The analogue of 
the Pisot-Vijayaraghavan numbers in fields of formal power series. 

P. L. Duren, Massachusetts Institute of Technology, June, minor 

in Physics, Spectral theory of a class of non-selfadjoint infinite matrix 
operators. 

T. A. Dwyer, Case Institute of Technology, June, minor in Physics, 
Numerical analysis and nonlinear network problems. 

J. A. Dyer, University of Texas, August, minor in Physics, On the 
consequences of momentum conservation laws in a gravitational theory of 
the Whitehead type. 

C. H. Edwards, Jr., University of Tennessee, December, Concentric 

tori in the three-sphere. 
L. C. Eggan, University of Oregon, June, On diophantine approxi- 

mations. 
C. C. Elgot, University of Michigan, February, Decision problems 

of finite automata design and related arithmetics. 

B. E. Ellison, University of Chicago, June, A multivariate k-popu- 

lation classification problem. 
J. A. Ernest, University of Illinois, February, Central intertwining 

numbers for representations of finite groups. 
D. J. Eustice, Purdue University, January, Summability of orthog- 

onal series. 
Leonard Evens, Harvard University, June, The cohomology ring of 

a finite group. 
J. A. Ferling, University of Southern California, June, A nonlinear 

eigenvalue problem for harmonic functions. 

K. M. Ferrin, University of California; Los Angeles, June, Multiple 
decision procedures for normal populations. 

R. I. Fields, Virginia Polytechnic Institute, June, Estimation with 
samples drawn from different but parametrically related distributions. 

A. M. Fink, Iowa State University, February, minor in History of 
Science, Almost periodic points in topological transformation semi- 
groups. 

Betty J. Isaacs Flehinger, Columbia University, November, A 
general model for the reliability analysis of systems under various pre- 
ventive maintenance policies. 

L. D. Fountain, University of Nebraska, August, minor in Physics, 
The boundary value problem for an ordinary nonlinear differential equa- 

tion of second order. 
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Stanley Frank, University of Florida, February, minor in Educa- 
tion, Certain cyclic involutory mappings on hyperspace surfaces. 

D. A. Freedman, Princeton University, October, Mixtures of sto-- 

chastic processes. 
M. L. Freimer, Harvard University, June, Truncated policies in 

dynamic programming. 
A. H. Frey, Jr., University of Washington, June, Studies on amen- 

able semigroups. 
P. J. Freyd, Princeton University, June, Functor theory. 

Yoichiro Fukuda, University of California, Los Angeles, June, 

Estimation problems in inventory control. 
J. B. Garner, Auburn University, June, Linear differential systems 

with two-point and three-point boundary conditions. 
E. D. Gaughan, University of Kansas, October, minor in Physics, 

Generalized derivatives. 
D. W. Gaylor, North Carolina State College, May, The construc- 

tion and evaluation of some designs for the estimation of parameters in 
random models. 

C. W. Gear, University of Illinois, June, Simgular shock intersec- 
tions in plane flow. 

Q. K. Ghori, University of British Columbia, May, minor in Phys- 
ics, On the equations of motion of mechanical systems subject to nonlinear 
nonholonomic constraints. 

J. D. Gilbert, Auburn University, August, On subdirect prod- 
ucts. 

S. C. Gitier, Princeton University, April, Cohomology operations 

with bundles of coefficients. 
Orville Goering, Iowa State University, June, minor in Physics, 

Dependence of the solution of a Goursat problem on the characteristic data. 
Ruth Zwerling Gold, Columbia University, June, Inference about 

Markov chains with nonstationary transition probabilities. 
A. B. Gray, Jr., New Mexico State University, January, minor in 

Physics, Infinite symmetric groups and monomial groups. 
D. A. Greenberg, Columbia University, Theory of the hyperfine 

anomalies of deuterium, tritium and helium**. 
Martin Greendlinger, New York University, February, Dehn’s 

algorithm for the word problem. 
J. E. Grizzle, North Carolina State College, May, minor in Animal 

Industry, A pplication of the logistic model to analyzing categorical data. 
B. I. Gross, University of Pennsylvania, February, Groups of formal 

analytic transformations. 
Arnold Grudin, University of Colorado, June, minor in Philosophy, 

Zeros of successive derivatives of entire functions. 
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S. K. Gupta, Case Institute of Technology, June, A theory of ad- 
justing parameter-estimates in decision models. 

‘W. L. Hafley, North Carolina State College, May, minor in For- 

estry, Some comparisons of sensitivities for two methods of measurement. 
Maurice Hanan, Carnegie Institute of Technology, June, Oscilla- 

tion criteria for third-order linear differential equations. 
V. R. Hancock, Tulane University, August, Commutative Schreier 

extensions of semigroups. 
E. R. Hansen, Stanford University, October, On Jacobi methods and 

Block-Jacobi methods for computing matrix eigenvalues. 
D. L. Hanson, Indiana University, June, Contributions to decision 

theory, ergodic theory, and stochastic processes. 
J. E. Hanson, George Washington University, February, On linear 

sequence spaces which permit omission and adjunction and have finite 
dimension modulo convergence. 

M. E. Harris, Harvard University, June, Some results on a gen- 
eralization of the character table of a finite group. 

C. A. Harvey, University of Minnesota, December, minor in 
Physics, Existence of periodic solutions of the differential equation 

x’’+g(x) = p(t). 
M. P. Heble, Indiana University, June, Linear estimation of regres- 

ston coefficients; orthogonal matrix polynomials and application to 
multidimensional weakly stationary processes ; interpolation and regres- 
sion. 

Stevens Heckscher, Harvard University, March, A characterization 

of certain Banach function spaces. 
Gertrude Ilse Heller, Johns Hopkins University, June, On certain 

non-linear operators and partial differential equations. 
D. S. Henderson, Harvard University, June, Logical designs for 

arithmetic untts. 

S. W. Hess, Case Institute of Technology, June, On research and 
development budgeting and project selection. 

P. D. Hill, Auburn University, June, Limits of discrete groups. 
Heisuke Hironaka, Harvard University, June, Theory of birational 

blowing-ups. 

C. R. Hobby, California Institute of Technology, June, The derived 
series of a p-group. 

H. C. Hsieh, University of California, Berkeley, June, The analysis 
of the effect of an obstacle on the electromagnetic field in a circular 
cylindrical wave guide. 

N.-C. Hsu, Washington University, January, On automorphisms of 
a splitting extension G=(H, K; ¢). 
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T. C. Hu, Brown University, June, Optimum design for structures 
of perfectly-plastic materials. 

B. E. Hubbard, University of Maryland, June, Bounds for eigen- 
values of the free and fixed membrane by finite difference methods. 

Taqdir Husain, Syracuse University, September, On S-spaces and 
the open mapping theorem. 

S. Y. Husseini, Princeton University, June, On the cohomology of 
exact sequences of compact groups. 

P. H. Hutcheson, University of Florida, August, minor in Chem- 
istry, The use of complex variables for solving certain elasticity problems 
involving intersecting boundaries. 

J. M. Irwin, University of Kansas, June, High subgroups of Abelian 
torsion groups. 

J. E. Jackson, Virginia Polytechnic Institute, June, Multivariate 
sequential procedures for testing means. 

Ronald Jacobowitz, Princeton University, June, Hermitian forms 
over local fields. 

B. N. Jamison, University of California, Berkeley, September, On 
ergodic theory of Markov operators. 

R. I. Jennrich, University of California, Los Angeles, Analysis of 
variance in the general mixed model. 

H. L. Johnson, University of Minnesota, June, minor in Physics, 
Quadratic versus linear dependence of solutions of certain linear partial 
differential equations. 

G. S. Jones, Jr., University of Cincinnati, August, Asymptotic be- 
havior and periodic solutions of a nonlinear differential-difference equa- 
tion. 

W. L. Jones, Columbia University, November, On conjugate func- 
tionals. 

C. L. Kaller, Purdue University, June, A statistical approach to the 

study of genetic environmental interactions. 
H. M. Kamowitz, Brown University, June, Cohomology groups of 

commutative Banach algebras. 
Julius Kane, New York University, June, minor in Physics, Part 

I. An accurate boundary condition to replace transition conditions at 
dielectric-dielectric interfaces. Part 11. Radio propagation past a di- 
electric interface. 

E. D. Kann, New York University, February, Bonnet’s theorem in 
two-dimensional G-spaces. 

J. E. Kelley, University of Michigan, June, Characterization of the 
closed 2-cell and of the 2-sphere without assuming compactness. 

C. F. Kent, Massachusetts Institute of Technology, September, 
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minor in Physics, Algebraic structure of some groups of recursive per- 
mutations. 

S. A. Khabbaz, University of Kansas, June, Theorems on Abelian 
groups. 

H.-C. Khare, McGill University, May, Positron annihilation and 
scattering in helium. 

Masakiti Kinukawa, Northwestern University, June, Fourier 

series. 
R. S. Kleber, State University of lowa, June, On the problem of 

minimum variance and maximum probability. 
Adam Kleppner, Harvard University, June, Multipliers on Abelian 

groups. 

J. H. Klotz, University of California, Berkeley, September, Non- 

parametric tests for scale. 
T. B. Knapp, Harvard University, March, The relatively minimal 

models of a rational function field. 

A. G. Konheim, Cornell University, June, Some properties of a class 
of finite trigonometric sums. 

F. J. Kosier, Michigan State University, September, On a class of 
non-flexible algebras. 

Samuel Kotz, Cornell University, September, Exponential bound 
for the probability of error in discrete memoryless channels. 

Kurt Kreith, University of California, Berkeley, June, The spec- 

trum of singular elliptic operators. 
B. M. Kurkjian, American University, June, General theory for 

asymmetrical confounded factorial experiments. 

W. H. Lake, Catholic University of America, June, minor in 

Physics, The numerical inversion of a particular class of matrices. 
L. H. Lange, University of Notre Dame, June, Non-Euclidean 

Cercles de Remplissage and other analogues in the unit circle to classical 
theorems on entire functions. 

L. J. Lange, University of Colorado, August, Divergence, conver- 
gence, and speed of convergence of continued fractions 1+ K(a,/1). 

R. P. Langlands, Yale University, June, Semi-groups and repre- 

sentations of Lie groups. 
H. J. Larson, Iowa State University, August, minor in Industrial 

Engineering, Sequential model building for prediction in regression 
analysis. 

A. T. Lauria, Purdue University, January, One-dimensional re- 

tracts. 

Leon LeBlanc, University of Chicago, June, Non-homogeneous and 
higher polyadic algebras. 
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E. B. Lee, University of Minnesota, August, minor in Engineering, 
Methods of optimum feedback control. 

L. M. Levine, New York University, June, Diffraction by an elliptic 
cone. 

B. W. Levinger, New York University, June, A generalization of the 
braid group. 

G. E. Lewis, New York University, February, Two methods using 
power series for solving analytic non-characteristic initial value problems. 

J. A. Lindberg, Jr., University of Minnesota, August, On the theory 
of algebraic extensions of a normed algebra. 

Seymour Lipschutz, New York University, February, On the braid 
group. 

H.-C. Liu, University of Cincinnati, June, Interpolation of entire 
functions. 

A. L. Liulevicius, University of Chicago, June, The factorization of 
cyclic reduced powers by secondary cohomology operations. 

Stanley Locke, New York University, February, A boundary layer 
theory of elastic plane stress. 

J. L. Locker, Auburn University, August, A statistical analysis of 
the propagation of rounding error. 

C. A. Long, University of Illinois, June, minor in Physics, Schwartz 

distributions analytic in a parameter. 
David Lubell, New York University, June, Distribution functions 

for completely additive arithmetical functions on subsequences of the 
natural numbers. 

A. T. Lundell, Brown University, June, Obstruction theory of 
principal fibre bundles. 

C. W. Lytle, New York University, February, Differentiators for 

linear second order elliptic partial differential equations. 
E. B. McCue, Carnegie Institute of Technology, June, Power char- 

acteristics of the control chart for number of defects, no standard given. 
J. E. McFarland, Oregon State College, June, Iterative solution of 

nonlinear integral equations. 
R. A. McHaffey, Rutgers, The State University, June, Structure 

theorems for a class of lattice ordered real Banach algebras. 
D. O. McKay, University of Buffalo, February, minor in Philos- 

ophy, An extension of the Staudt-Clausen and Kummer congruences for 
the Bernoulli numbers of higher order. 

D. R. McMillan, Jr., University of Wisconsin, June, On homo- 

logically trivial 3-manifolds. 
G. J. Maltese, Yale University, June, Generalized convolution alge- 

bras and spectral representations. 
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John Mariani, New York University, February, Exponential solu- 
tions of linear differential equations of the second degree. 

P. H. Maserick, University of Maryland, August, Half rings in 
linear spaces. 

T. K. Matthes, Columbia University, June, Two-stage sampling 

procedures. 

J. G. May, University of Virginia, June, Non-closed connected sets. 
W. G. May, University of Virginia, June, Images of plane continua. 
J. W. Meux, University of Florida, August, minor in Education, 

Orthogonal polynomial solutions of a class of fourth order linear dif- 
ferential equations. 

P. E. Miles, Yale University, June, Order isomorphisms of B* 
algebras. 

R. M. Mirman, Columbia University, The dispersion relations for 

pion production in pion nuclear collisions. 
B. M. Mitchell, Brown University, June, Homological tic tac toe. 
C. C. Moore, Harvard University, June, Extensions and cohomol- 

ogy theory of locally compact topological groups. 
D. F. Morrison, Virginia Polytechnic Institute, June, The life 

distribution and reliability of a system with spare components. 
J. F. Mount, University of California, Los Angeles, June, Some 

applications of Schauder's theory to the calculus of variations and nu- 
merical analysis. 

K. R. Mount, University of California, Berkeley, June, Character- 
istic classes of algebraic vector bundles. 

I. H. Mufti, The University of British Columbia, May, minor in 
Physics, Stability in the large of autonomous systems of two differential 
equations. 

D. E. Myers, University of Illinois, February, An imbedding space 
for Schwartz distributions. 

A.-A. K. Nafoosi, University of Colorado, June, Representation of 
any large number as the sum of thirteen squares of positive integers in 
arithmetical progression. 

Sister Mary Redempta Nedumpilly, St. Louis University, June, 
minor in Physics, On a generalized Feld series. 

L. W. Neustadt, New York University, February, The moment 

problem and weak convergence in a Hilbert space. 
J. N. Newman, Massachusetts Institute of Technology, February, 

Linearized theory for the motion of a thin ship in regular waves. 
H. H. Nickle, Columbia University, Strong-coupling treatment of a 

charged scalar meson field interacting with a static extended source. 
R. N. van Norton, New York University, February, The spectrum 

of a neutron transport operator. 
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R. C. O'Neil, University of Chicago, December, Fractional integra- 
tion and Orlicz spaces. 

D. R. Ostberg, University of California, Berkeley, September, 
Cohomology of groups and simple algebras. 

E. H. Ostrow, University of Chicago, August, A theory of gen- 
eralized Hilbert transforms. 

J. R. Padro, St. Louis University, June, Extension and applications 

of cumulative characteristic functions. 

R. P. Pakshirajan, University of Oregon, June, Regular measures 
and stochastic processes in topological groups. 

J. B. Pan, St. Louis University, June, minor in Physics, On topo- 
logical semigroups. 

Subramonier Parameswaran, University of Illinois, February, 
minor in Education, Some theorems on the growth of partition func- 
tions. 

W. E. Parr, University of Maryland, June, minor in Physics, 

Upper and lower bounds for the capacitance of the regular solids. 

C. W. Patty, University of Georgia, June, Homotopy groups of cer- 
tain deleted product spaces. 

K. M. Patwary, American University, June, Error and non-error 

models in bio-assay. 

E. M. Paul, University of Illinois, October, minor in Philosophy, 
Density in the light of probability theory. 

C. M. Pearcy, Jr., Rice University, June, On the unitary equiva- 
lence of N-normal operators. 

J. M. Perry, University of Rochester, June, Solution of boundary- 
value problems in arbitrary sectors by use of the double Laplace trans- 
form. 

M. W. Pownall, University of Pennsylvania, February, Am investi- 
gation of a conjecture of Goodman. 

Walter Pressman, New York University, June, Evaluation of parti- 
tion functions. 

W. E. Pruitt, Stanford University, June, Bilateral birth and death 

processes. 

L. D. Pyle, Purdue University, June, The generalized inverse in 

linear programming. 

D. E. A. Quade, University of North Carolina, June, The asymp- 
lotic power of the Kolmogorov tests of goodness of fit. 

D. F. Rearick, California Institute of Technology, June, Some visi- 

bility problems in point lattices. 

J. D. Reid, University of Washington, August, Invariants of tor- 

ston free groups. 
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J. I. Richards, Harvard University, June, A classification of non- 
compact surfaces. ’ 
Wyman Richardson, University of North Carolina, August, 

Asymptotic methods of evaluating [,°f(x)dx. 
Helen G. Murray Roberts, Boston University, June, Two sequen- 

tial tests against cyclic trend. 
Ruth Mabel Roberts, University of Pennsylvania, June, On the 

solvability of a second order linear homogeneous differential equation. 
V. G. Robinson, Purdue University, June, A study of mathematical 

models of epidemic disease distributions. 
Esther Rodlitz, New York University, February, Deformation of 

Riemann surfaces. 
B. W. Romberg, University of Rochester, June, The spaces H, 

with 0<p<1. 
H. M. Rosenblatt, George Washington University, February, 

Multivariate experimental designs. 

Azriel Rosenfeld, Columbia University, Specializations in differen- 
tial algebra. 

Alan Ross, Iowa State University, February, On two problems in 
sampling theory: unbiased ratio estimators and variance estimates in 
optimum sampling designs. 

K.A. Ross, University of Washington, March, Studies in semigroups. 

Hugo Rossi, Massachusetts Institute of Technology, February, 
minor in Languages, Maximality of algebras of holomorphic functions. 

R. D. Ryan, California Institute of Technology, June, Fourier 
transforms of certain classes of integrable functions. 

M. J. Saadaldin, Duke University, September, A generalized 
Lebesgue covering theorem. 

David Sachs, Illinois Institute of Technology, January, Modulated 
and partition lattices. 

R. C. Sacksteder, Johns Hopkins University, February, minor in 
Physics, Local and global properties of convex sets and hypersurfaces. 

A. A. Sagle, University of California, Los Angeles, August, Malcev 
algebras. 

P. A. Scheinok, Indiana University, June, The error on using the 
asymptotic variance and bias of spectrograph estimates for finite ob- 
servation time. 

E. M. Scheuer, University of California, Los Angeles, June, Simul- 
taneous estimation for means or medians of dependent random variables 
without distribution assumptions. 

A. J. Schwartz, Wayne State University, August, The geometric 
theory of non-compact transformation groups. 
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Lorraine Schwartz, University of California, Berkeley, September, 
Consistency of Bayes’ procedures. 

Jack Segal, University of Georgia, June, Inverse limit spaces. 
Tetsundo Sekiguchi, Oklahoma State University, August, Repre- 

sentation theorems for summability operators and linear functionals on 

bounded sequences. 
D. W. H. Shale, University of Chicago, June, On certain groups of 

operators on Hilbert space. 

W. T. Sharp, Princeton University, June, Racah algebra and the 
contraction of groups. 

Aaron Siegel, Rutgers, The State University, January, Summa- 
bility C of series of surface spherical harmonics. 

Rajinder Singh, University of Illinois, June, minor in Economics, 
Existence of bounded length confidence intervals. 

R. C. Singleton, Stanford University, October, Steady state proper- 
ties of selected inventory models. 

F. M. Sioson, University of California, Berkeley, June, Contribu- 
tions to the theory of primal and independent algebras. 

R. C. Smith, McGill University, May, Central three-body nuclear 

forces. 

Ramaiyengar Sridharan, Columbia University, June, Filtered alge- 
bras and representations of Lie algebras. 

S. R. Srivastava, Purdue University, June, The power of an analysis 

of variance test procedure involving some preliminary tests for certain 
incompletely specified models. 

E. W. Stacy, University of North Carolina, June, An estimate of 
correlation corrected for attenuation and its distribution. 

W. D. Stahlman, Brown University, June, The astronomical tables 

of Codex Vaticanus Graecus 1291. 
J. G. Stampfli, University of Michigan, February, On operators re- 

lated to normal operators. 
H. M. Sternberg, University of Maryland, June, The solution of the 

characteristic and the Cauchy boundary value problems for the Bianchi 

partial differential equation in n independent variables by a generaliza- 

tion of Riemann's method. 
H. R. Stevens, Duke University, June, minor in Philosophy, Hur- 

witz product of sequences satisfying a generalized Kummer’s congruence. 
S. H. Storey, McGill University, May, The galvanomagnetic prop- 

erties of some solids at low temperatures and high magnetic fields. 

S. L. Strack, Brown University, June, Supersonic panel flutter of a 

finite cylinder. 
Charlotte Thomas Striebel, University of California, Berkeley, 
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January, Efficient estimation of regression parameters for certain second 
order stationary processes. 

Beauregard Stubblefield, University of Michigan, February, minor 
in Philosophy, Some compact product spaces which cannot be imbedded 
in Euclidean n-space. 
Mudomo Sudigdomarto, University of Illinois, February, minor in 

Physics, A representation theory for the Laplace transform of vector- 
valued functions. 

Shashikala Sukhatme, Michigan State University, September, 
Asymptotic theory of some nonparametric tests. 

D. W. Swann, Stanford University,-June, Applications and exten- 
stons of the method of Wiener and Hopf for the solution of singular and 
non-singular integral and integro-differential equations. 

R. H. Szczarba, University of Chicago, August, Homology of 
twisted cartesian products. 

R. J. Talham, Rensselaer Polytechnic Institute, January, Direc- 
tional receivers in correlation detection. 

S. G. Tellman, University of Washington, June, Abelian groups 
with proper isomorphic quotient groups. 

Peter Terwey, Jr., Texas Agricultural and Mechanical College, 
May, minor in Physics, Some aspects of gas dynamics in a closed re- 
gion. 

R. C. Thompson, California Institute of Technology, June, Com- 
mutators in the special and general linear groups. 

L. J. Tick, Columbia University, September, minor in Sociology, 

Contributions to theory and application of random processes in fluid 
mechanics. 

T. W. Ting, Indiana University, June, Fracture of closed circular 
pipes under tnternal pressure and axial tension. 

R. J. Troyer, Indiana University, September, Multilinear algebra 
in Abelian categories. 

E. J. Tully, Jr., Tulane University, June, Representation of a semi- 
group by transformations of a set. 

R. L. Van de Wetering, Stanford University, October, On the 
motions of particles in Euclidean and non-Euclidean spaces under cer- 
tain conservative force fields. 

F. S. Van Vleck, University of Minnesota, August, Bifurcation of 
an invariant mantfold from a periodic solution of a differential system. 

K. Varadarajan, Columbia University, June, Dimension, category 
and K(x, n) spaces. 

H. M. Wadsworth, Jr., Western Reserve University, June, A sto- 

chastic theory of documentation. 



1961) DOCTORATES CONFERRED IN 1960 331 

J.-K. Wang, Stanford University, January, Multipliers of commu- 
tative Banach algebras. 

M. T. Wasan, University of Illinois, June, Sequential estimation of 
a binomial parameter. 

J. R. Webb, University of Texas,. August, minor in Physics, A 
Hellinger integral representation for bounded linear functionals. 

J. T. Webster, North Carolina State College, July, A decision pro- 
cedure for the inclusion of an independent variate in a linear estimator. 

D. F. Wehn, Yale University, June, Limit distributions on Lie 

groups. 

P. M. Weichsel, California Institute of Technology, June, A de- 
composition theory for finite groups with applications to p-groups. 

F. W. Weiler, Ohio State University, June, On the T-Jacobian. 

G. G. Weill, University of California, Los Angeles, January, Re- 

producing kernels and orthogonal kernels for analytic differentials on 
Riemann surfaces. 

R. R. Welland, Purdue University, June, Local integrability in 

o-finite measure spaces and Kéthe spaces. 
Roy Westwick, University of British Columbia, May, minor in 

Physics, Linear transformations on Grassmann product spaces. 
T. A. Willke, Ohio State University, August, A class of multivariate 

rank statistics. 
J. C. Wilson, Case Institute of Technology, June, Analysis of con- 

cepts of differentiability on algebras. 
D. M. G. Wishart, Princeton University, October, Augmentation 

techniques tn the theory of queues. 
W. W. Wolman, University of Rochester, June, A problem in the 

design and analysis of experiments with correlated observations. 
T.-C. Woo, Brown University, June, Fundamental solutions for 

small deformations superposed on finite biaxial extension of an elastic 

body. 
W. B. Woolf, University of Michigan, February, Radial cluster sets 

and the distribution of values of meromorphic functions. 
J. Z.-T. Yao, University of Chicago, June, Moore-Catan theorems 

and Leray-Serre theorem. 
Bohyun Yim, Brown University, June, Supersonic flow past double 

wedge wings with variable thickness. 

N. D. Ylvisaker, Stanford University, January, On time series 

analysis and reproducing kernel spaces. 

P. J. Zwier, Purdue University, August, Homology and cohomology 

from rings of functions. 
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